Skip to main content
Log in

Post-rotatory nystagmus and optokinetic after-nystagmus in the rabbit linear rather than exponential decay

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The decay of the slow phase velocity of post-rotatory (PRN) and optokinetic (OKAN) afternystagmus as a function of time was measured in Dutch rabbits after stimulation with velocity steps of 30, 60, and 150 °/s. The decays fitted linear functions very well, but only poorly exponential ones. Typical decay rates were 2–5 °/s2, with apparent time constants (defined by decay to 37% of initial velocity) in the order of 10–20 s. Within one animal, the decays of OKAN and PRN with similar initial velocities were indistinguishable. With sinusoidal oscillation, the time constant of the vestibulo-ocular reflex — estimated from phase lead — was only 2–3 s, and probably similar to the cupular time constant. In general, time constants increased when eye velocities increased. This indicates that the vestibulo-ocular reflex of the rabbit behaves as a non-linear system. A velocity storage system with a constant discharge rate is postulated as a main non-linear element. This would introduce a linear decay of velocity as well as a threshold for velocity. This storage system would be common to both vestibulo-ocular and optokinetic reflexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baarsma EA, Collewijn H (1974) Vestibulo-ocular and optokinetic reactions to rotation and their interaction in the rabbit. J Physiol (Lond) 238: 603–625

    Google Scholar 

  • Batini C, Ito M, Kado RT, Jastreboff PJ, Miyashita Y (1979) Interaction between the horizontal vestibulo-ocular reflex and optokinetic response in rabbits. Exp Brain Res 37: 1–15

    Google Scholar 

  • Blair S, Gavin M (1979) Response of the vestibulo-ocular reflex to differing programs of acceleration. Invest Ophthalmol 18: 1086–1090

    Google Scholar 

  • Blanks RHI, Estes MS, Markham CH (1975) Physiological characteristics of vestibular first-order canal neurons in the cat. II. Response to constant angular acceleration. J Neurophysiol 38: 1250–1268

    Google Scholar 

  • Buettner UW, Büttner U, Henn V (1978) Transfer characteristics of neurons in vestibular nuclei of the alert monkey. J Neurophysiol 41: 1614–1628

    Google Scholar 

  • Büttner U, Waespe W, Henn V (1976) Duration and direction of optokinetic afternystagmus as a function of stimulus exposure time in the monkey. Arch Psychiat Nervenkr 222: 281–291

    Google Scholar 

  • Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic afternystagmus. J Physiol (Lond) 270: 321–344

    Google Scholar 

  • Collewijn H (1969) Optokinetic eye movements in the rabbit. Input-output relations. Vision Res 9: 117–132

    Article  CAS  PubMed  Google Scholar 

  • Collewijn H (1972) An analog model of the rabbit's optokinetic system. Brain Res 36: 71–88

    Google Scholar 

  • Collewijn H (1976) Impairment of optokinetic (after-)nystagmus by labyrinthectomy in the rabbit. Exp Neurol 52: 146–156

    Google Scholar 

  • Collewijn H (1977) Eye- and head movements in freely moving rabbits. J Physiol (Lond) 266: 471–498

    Google Scholar 

  • Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34: 661–675

    CAS  PubMed  Google Scholar 

  • Groen JJ (1957) Cupulometry. Laryngoscope 67: 894–905

    Google Scholar 

  • Igarashi M, Takahashi M, Homick JL (1978) Optokinetic afternystagmus and postrotatory nystagmus in squirrel monkey. Acta Otolaryngol [Stockh] 85: 387–396

    Google Scholar 

  • Jung R (1948) Die Registrierung des postrotatorischen und optokinetischen Nystagmus und die optisch-vestibuläre Integration beim Menschen. Acta Otolaryngol [Stockh] 36: 199–202

    Google Scholar 

  • Koenig E, Allum JHJ, Dichgans J (1978) Visual-vestibular interaction upon nystagmus slow phase velocity in man. Acta Otolaryngol [Stockh] 85: 397–410

    Google Scholar 

  • Landers PH, Taylor A (1975) Transfer function analysis of the vestibulo-ocular reflex in the conscious cat. In: Lennerstrand G, Bach-y-Rita P (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon Press, Oxford, pp 505–508

    Google Scholar 

  • Mowrer OH (1937) The influence of vision during bodily rotation upon the duration of post-rotational vestibular nystagmus. Acta Otolaryngol [Stockh] 25: 351–364

    Google Scholar 

  • Niven JI, Hixson WC, Correia MJ (1965) An experimental approach to the dynamics of the vestibular mechanisms. In: The role of the vestibular organs in the exploration of space. NASA, Washington DC (NASA SP-77)

    Google Scholar 

  • Raphan T, Cohen B, Matsuo V (1977) A velocity-storage mechanism responsible for optokinetic nystagmus (OKN), optokinetic afternystagmus (OKAN) and vestibular nystagmus. In: Baker R, Berthoz A (eds) Control of gaze by brainstem neurons. Elsevier, Amsterdam, pp 37–47

    Google Scholar 

  • Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35: 229–248

    CAS  PubMed  Google Scholar 

  • Robinson DA (1976) Adaptive gain control of vestibulo-ocular reflex by the cerebellum. J Neurophysiol 39: 954–969

    Google Scholar 

  • Robinson DA (1977) Vestibular and optokinetic symbiosis. An example of explaining by modelling. In: Baker R, Berthoz A (eds) Control of gaze by brainstem neurons. Elsevier, Amsterdam, pp 49–58

    Google Scholar 

  • Skavenski AA, Robinson DA (1973) Role of abducence neurons in vestibulo-ocular reflex. J Neurophysiol 36: 724–738

    Google Scholar 

  • Steinhausen W (1933) Über die Beobachtung der Cupula in den Bogengangsampullen des Labyrinths des lebenden Hechts. Pfluegers Arch 232: 500–512

    Google Scholar 

  • Ter Braak JWG (1976) Untersuchungen über optokinetischen Nystagmus. Arch Neerl Physiol 21: 309–376

    Google Scholar 

  • Van Egmond AAJ, Groen JJ, Jongkees LBW (1949) The mechanics of the semicircular canal. J Physiol (Lond) 110: 1–17

    Google Scholar 

  • Waespe W, Henn V (1977a) Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 27: 523–538

    Google Scholar 

  • Waespe W, Henn V (1977b) Vestibular nuclei activity during optokinetic after-nystagmus (OKAN) in the alert monkey. Exp Brain Res 30: 323–330

    Google Scholar 

  • Waespe W, Henn V (1979) Motion information in the vestibular nuclei of alert monkeys. Visual and vestibular input vs. optomotor output. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. (Progress in Brain Research, vol 50) Elsevier, Amsterdam, pp 683–693

    Google Scholar 

  • Winterson BJ, Collewijn H, Van der Steen J (1979) Postrotatory nystagmus, optokinetic afternystagmus and the vestibuloocular response in Dutch-belted rabbits. Neurosci Abstr 9: 1317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collewijn, H., Winterson, B.J. & van der Steen, J. Post-rotatory nystagmus and optokinetic after-nystagmus in the rabbit linear rather than exponential decay. Exp Brain Res 40, 330–338 (1980). https://doi.org/10.1007/BF00237798

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237798

Key words

Navigation