Skip to main content
Log in

Differential processing of Asn-linked oligosaccharides on pituitary glycoprotein hormones: implications for biologic function

  • Original Article
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Luteinizing hormone, follicle-stimulating hormone, and thyroid-stimulating hormone from pituitary and chorionic gonadotropin from placenta are a family of glycoproteins, each consisting of an α and β subunit. Within an animal species, the α subunit of all four hormones contains the identical amino acid sequence, while each β subunit is distinct and confers biologic specificity to the hormone dimer. Despite sharing common α subunits, these hormones bear Asn-linked oligosaccharides which differ in structure. Whereas chorionic gonadotropin contains exclusively neutral and sialylated oligosaccharides, the pituitary hormones bear neutral, sialylated, sulfated, and sialylated/sulfated structures. The sulfated oligosaccharides are unique in structure and are more prevalent on certain pituitary hormones, indicating that the synthesis of these unusual oligosaccharides is tightly regulated. The differences in oligosaccharide structures in conjunction with the highly specific endocrine responses elicited by these hormones, suggest an important functional role for the oligosaccharides, such as metabolic clearance, control of hormone response, modulation of hormone potency, and/or intracellular sorting of hormones into separate secretory granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierce JG, Parsons TF: Glycoprotein hormones: structure and function. Ann Rev Biochem 50:465–495, 1981.

    Google Scholar 

  2. Sairam MR: Gonadotropic hormones: relationship between structure and function with emphasis on antagonists. In: Li CH (ed). Hormonal proteins and peptides, Vol 11. Academic Press, New York, 1983, pp 1–79.

    Google Scholar 

  3. Boothby M, Ruddon RW, Anderson C, McWilliams D, Boime I: A single gonadotropin α-subunit gene in normal tissue and tumor-derived cell lines. J Biol Chem 256:5121–5127, 1981.

    Google Scholar 

  4. Fiddes JC, Goodman HM: The gene encoding the common alpha subunit of the four human glycoprotein hormones. J Mol Appl Genet 1:3–18, 1981.

    Google Scholar 

  5. Policastro P, Ovitt CE, Hoshina M, Fukuoka H, Boothby MR, Boime I: The β subunit of human chorionic gonadotropin is encoded by multiple genes. J Biol Chem 258:11492–11499, 1983.

    Google Scholar 

  6. Boorstein WR, Vamvakopoulos NC, Fiddes JC: Human chorionic gonadotropin β-subunit is encoded by at least eight genes arranged in tandem and inverted pairs. Nature 300:419–422, 1982.

    Google Scholar 

  7. Talmadge K, Boorstein WR, Fiddes JC: The human genome contains seven genes for the β-subunit of chorionic gonadotropin but only one gene for the β-subunit of luteinizing hormone. DNA 2:279–287, 1982.

    Google Scholar 

  8. Kessler MJ, Mise T, Ghai RD, Bahl OP: Structure and location of the O-glycosidic carbohydrate units of human chorionic gonadotropin. J Biol Chem 254:7909–7914, 1979.

    Google Scholar 

  9. Cole LA, Perini F, Birken S, Ruddon R: An oligosaccharide of the O-linked type distinguishes the free from the combined form of hCG α subunit. Biochem Biophys Res Commun 122:1260–1267, 1984.

    Google Scholar 

  10. Parsons TF, Bloomfield GA, Pierce JG: Purification of an alternate form of the a subunit of the glycoprotein hormones from bovine pituitaries and identification of its O-linked oligosaccharide. J Biol Chem 258:240–244, 1982.

    Google Scholar 

  11. Parsons TF, Pierce JG: Free α-like material from bovine pituitaries. Removal of its O-linked oligosaccharide permits combination with lutropin-β. J Biol Chem 259:2662–2666, 1984.

    Google Scholar 

  12. Corless CL, Boime I: Differential secretion of O-glycosylated gonadotropin α-subunit and luteinizing hormone (LH) in the presence of LH-releasing hormone. Endocrinology 117:1699–1706, 1985.

    Google Scholar 

  13. Ashitaka Y, Nishimura R, Takemori M, Tojo S: Production and secretion of hCG and hCG subunits by trophoblastic tissue. In: Segal SJ (ed). Chorionic Gonadotropin. Plenum Press, New York, 1980, pp 147–176.

    Google Scholar 

  14. Boyd JD, Hamilton WJ: The Human Placenta. W Heffer and Sons, Ltd, Cambridge, 1970, pp 157–174.

    Google Scholar 

  15. Midgely AR, Pierce GB: Immunohistochemical localization of human chorionic gonadotropin. J Exp Med 115:289–294, 1962.

    Google Scholar 

  16. Wynn RM: Cytotrophoblastic specialization: an ultrastructural study of the human placenta. Am J Obstet Gynecol 114:339–355, 1972.

    Google Scholar 

  17. Hoshina M, Boothby M, Boime I: Cytological localization of chorionic gonadotropin and placental lactogen mRNAs during development of the human placenta. J Cell Biol 93:190–198, 1982.

    Google Scholar 

  18. Rennels EG, Herbert DC: Functional correlates of anterior pituitary cytology. Int Rev Physiol 22:1–40, 1980.

    Google Scholar 

  19. Nakane PK: Classification of anterior pituitary cell types with immunoenzyme histochemistry. J Histochem Cytochem 18:9- 20, 1970.

    Google Scholar 

  20. Zambrano D, Cuerdo-Rocha S, Bergmann I: Ultrastructure of rat pituitary gonadotrophs following incubations of the gland with synthetic LH-RH. Cell Tiss Res 150:179–192, 1974.

    Google Scholar 

  21. Herbert DC: Localization of antisera to LHβ and FSHβ in the rat pituitary gland. Am J Anal 144:379–385, 1975.

    Google Scholar 

  22. Dada MO, Campbell GT, Blake CA: A quantitative immunocytochemical study of the luteinizing hormone and follicle-stimulating hormone cells in the adenohypophysis of adult male rats and adult female rats throughout the estrous cycle. Endocrinology 113:970–984, 1983.

    Google Scholar 

  23. Childs GV, Ellison DG, Garner LL: An immunocytochemist's view of gonadotropin storage in the adult male rat: cytochemical and morphological heterogeneity in serially sectioned gonadotropes. Am J Anat 158:397–409, 1980.

    Google Scholar 

  24. Childs GV, Hyde C, Naor Z, Catt K: Heterogeneous luteinizing hormone and follicle-stimulating hormone storage patterns in subtypes of gonadotropes separated by centrifugal elutriation. Endocrinology 113:2120–2128, 1983.

    Google Scholar 

  25. Childs GV: Studies of hormone storage and secretion in the multipotential gonadotrope. In: Labrie F, Proulx L (eds). Endocrinology, Proceedings of the 7th International Congress of Endocrinology. Elsevier Science Publishers BV, Amsterdam, 1984, pp 499–502.

    Google Scholar 

  26. Childs GV: Fluidity of gonadotropin storage in cycling female rats. In: McKerns KW, Naor Z (eds). Hormonal Control of the Hypothalamo-Pituitary-Gonadal Axis. Plenum Press, New York, 1984, pp 181–198.

    Google Scholar 

  27. Childs GV: Shifts in gonadotropin storage in cultured gonadotropes following GnRH stimulation, in vitro. Peptides 6:103–107, 1985.

    Google Scholar 

  28. Childs G, Naor Z: Ultrastructural co-localization of gonadotropin and biotinylated GnRH with triple ABC-peroxidase and immunogold stains. In: Program and Abstracts, 67th Annual Meeting of the Endocrine Society. Endocrine Society, Baltimore, 1985, p 106, #424 (Abstr).

    Google Scholar 

  29. Herbert DC: Immunocytochemical evidence that luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are present in the same cell type in the rhesus monkey pituitary gland. Endocrinology 98:1554–1557, 1976.

    Google Scholar 

  30. Phifer RF, Midgley AR, Spicer SS: Immunological and histologic evidence that follicle-stimulating hormone and luteinizing hormone are present in the same cell type in human pars distalis. J Clin Endocrinol Metab 36:125–141, 1973.

    Google Scholar 

  31. Dacheux F, Dubois MP: Ultrastructural localization of prolactin, growth hormone, and luteinizing hormone by immunocytochemical techniques in the bovine pituitary. Cell Tiss Res 174:245–260, 1976.

    Google Scholar 

  32. Green ED, Baenziger JU, Boime I: Cell-free sulfation of human and bovine pituitary hormones: comparison of the sulfated oligosaccharides of lutropin, follitropin, and thyrotropin. J Biol Chem 260:15631–15638, 1985.

    Google Scholar 

  33. Daniels-McQueen S, McWilliams D, Birken S, Canfield R, Landefeld T, Boime I: Identification of mRNAs encoding the α and β subunits of human choriogonadotropin. J Biol Chem 253:7109–7114, 1978.

    Google Scholar 

  34. Chin W, Habener J, Kieffer J, Maloof F: Cell-free translation of the messenger RNA coding for the α subunit of thyroid-stimulating hormone. J Biol Chem 253:7985–7988, 1978.

    Google Scholar 

  35. Kourides I, Weintraub B: mRNA-directed biosynthesis of α subunit of thyrotropin: translation in cell-free and whole cell systems. Proc Natl Acad Sci USA 76:298–302, 1979.

    Google Scholar 

  36. Fetherston J, Boime I: Synthesis of bovine lutropin in cellfree lysates containing pituitary microsomes. J Biol Chem 257:8143–8147, 1982.

    Google Scholar 

  37. Hoshina H, Boime I: Combination of rat lutropin subunits occurs early in the secretory pathway. Proc Natl Acad Sci USA 79:7649–7653, 1982.

    Google Scholar 

  38. Edmonds M, Moltich M, Pierce JG, Odell WD: Secretion of alpha subunits of luteinizing hormone (LH) by the anterior pituitary. J Clin Endocrinol Metab 41:551–555, 1975.

    Google Scholar 

  39. Hagen C, McNeilly AS: Changes in circulating levels of LH, FSH, LHβ- and α-subunit after gonadotropin-releasing hormone, and of TSH, TSHβ- and α-subunit after thyrotropin-releasing hormone. J Clin Endocrinol Metab 41:466–470, 1975.

    Google Scholar 

  40. Weintraub BD, Krauth G, Rosen SW, Rabson AS: Differences between purified ectopic and normal alpha subunits of human glycoprotein hormones. J Clin Invest 56:1043–1052, 1975.

    Google Scholar 

  41. Kourides IA, Hoffman BJ, Landon MB: Difference in glycosylation between secreted and pituitary free α-subunit of the glycoprotein hormones. J Clin Endocrinol Metab 51:1372–1377, 1980.

    Google Scholar 

  42. Prentice LG, Ryan RJ: LH and its subunits in human pituitary, serum and urine. J Clin Endocrinol Metab 40:303–312, 1975.

    Google Scholar 

  43. Kourides IA, Weintraub BD, Ridgway EC, Maloof F: Pituitary secretion of free α and β subunits of human thyrotropin in patients with thyroid disorders. J Clin Endocrinol Metab 40:872–885, 1975.

    Google Scholar 

  44. Kourides IA, Landon MB, Hoffman BJ, Weintraub BD: Excess free alpha relative to beta subunits of the glycoprotein hormones in normal and abnormal human pituitary glands. Clin Endocrinol 12:407–416, 1980.

    Google Scholar 

  45. Kornfeld R, Kornfeld S: Assembly of asparagine-linked oligosaccharides. Ann Rev Biochem 54:631–664, 1985.

    Google Scholar 

  46. Hubbard SC, Ivatt RJ: Synthesis and processing of asparagine-linked oligosaccharides. Ann Rev Biochem 50:555–583, 1981.

    Google Scholar 

  47. Berger EG, Buddecke E, Kamerling JP, Kobata A, Paulson JC, Vliegenthart JFG: Structure, biosynthesis and functions of glycoprotein glycans. Experientia 38:1129–1162, 1982.

    Google Scholar 

  48. Snider MD: Biosynthesis of glycoproteins: formation of N-linked oligosaccharides. In: Ginsburg V, Robbins PW (eds). Biology of Carbohydrates. Wiley-Intersciences, New York, 1984, pp 163–198.

    Google Scholar 

  49. Kobata A: The carbohydrates of glycoproteins. In: Ginsburg V, Robbins PW (eds). Biology of Carbohydrates. Wiley-Intersciences, New York, 1984, pp 87–161.

    Google Scholar 

  50. Endo Y, Yamashita K, Tachibana Y, Tojo S, Kobata A: Structures of the asparagine-linked sugar chains of human chorionic gonadotropin. J Biochem 85:669–679, 1979.

    Google Scholar 

  51. Mizuochi T, Kobata A: Different asparagine-linked sugar chains on the two polypeptide chains of human chorionic gonadotropin. Biochem Biophys Res Commun 97:772–778, 1980.

    Google Scholar 

  52. Kessler MJ, Reddy MS, Shah RH, Bahl OP: Structures of N-glycosidic carbohydrate units of human chorionic gonadotropin. J Biol Chem 254:7901–7908, 1979.

    Google Scholar 

  53. Baenziger JU: The oligosaccharides of plasma glycoproteins: synthesis, structure, and function. In: Putnam FW (ed). The Plasma Proteins: Structure, Function, and Genetic Control, Vol IV. Academic Press, Orlando, 1984, pp 271–315.

    Google Scholar 

  54. Mizuochi T, Nishimura R, Derappe C, Taniguhi T, Hamamoto T, Mochizuki M, Kobata A: Structures of the asparagine-linked sugar chains of human chorionic gonadotropin produced in choriocarcinoma: appearance of triantennary sugar chains and unique biantennary sugar chains. J Biol Chem 258:14126–14129, 1983.

    Google Scholar 

  55. Mizuochi T, Nishimura R, Taniguchi T, Utsunomiya T, Mochizuki M, Derappe C, Kobata A: Comparison of carbohydrate structures between human chorionic gonadotropin present in urine of patients with trophoblastic diseases and healthy individuals. Jpn J Cancer Res (Gann) 76:752–759, 1985.

    Google Scholar 

  56. Shome B, Parlow AF, Ramirez VD, Elrich H, Pierce JG: Human and porcine thyfotropins: a comparison of electrophoretic and immunological properties with the bovine hormone. Arch Biochem Biophys 103:441–455, 1968.

    Google Scholar 

  57. Shome B, Brown DM, Howard SM, Pierce JG: Bovine, human and porcine thyrotropins: molecular weights, amino- and carboxy-terminal studies. Arch Biochem Biophys 126:456–468, 1968.

    Google Scholar 

  58. Parsons TF, Pierce JG: Oligosaccharide moieties of glycoprotein hormones: bovine lutropin resists enzymatic deglycosylation because of terminal O-sulfated N-acetylhexosamines. Proc Natl Acad Sci USA 77:7089–7093, 1980.

    Google Scholar 

  59. Hortin G, Natowicz M, Pierce J, Baenziger J, Parsons T, Boime I: Metabolic labeling of lutropin with [35S]sulfate. Proc Natl Acad Sci USA 78:7468–7472, 1981.

    Google Scholar 

  60. Anumula KR, Bahl OP: Biosynthesis of lutropin in ovine pituitary slices: incorporation of [35S]sulfate in carbohydrate units. Arch Biochem Biophys 220:645–651, 1983.

    Google Scholar 

  61. Bahl OP, Reddy MS, Bedi GS: A novel carbohydrate structure in bovine and ovine luteinizing hormones. Biochem Biophys Res Commun 96:1192–1199, 1980.

    Google Scholar 

  62. Bedi GS, French WC, Bahl OP: Structure of carbohydrate units of ovine luteinizing hormone. J Biol Chem 257:4345–4355, 1982.

    Google Scholar 

  63. Hara K, Rathnam P, Saxena BB: Structure of the carbohydrate moieties of a subunits of human follitropin, lutropin, and thyrotropin. J Biol Chem 253:1582–1591, 1978.

    Google Scholar 

  64. Tolvo A, Fujiki Y, Bhavanandan VP, Rathnam P, Saxena BB: Studies on the unique presence of an N-acetylgalactosamine residue in the carbohydrate moieties of human follicle-stimulating hormone. Biochim Biophys Acta 719:1–10, 1982.

    Google Scholar 

  65. Green ED, Gruenebaum J, Bielinska M, Baenziger JU, Boime I: Sulfation of lutropin oligosaccharides with a cell-free system. Proc Natl Acad Sci USA 81:5320–5324, 1984.

    Google Scholar 

  66. Green ED, van Halbeek H, Boime I, Baenziger JU: Structural elucidation of the disulfated oligosaccharide from bovine lutropin. J Biol Chem 260:15623–15630, 1985.

    Google Scholar 

  67. Papkoff H, Gan J: Bovine interstitial cell-stimulating hormone: purification and properties. Arch Biochem Biophys 136:522–528, 1970.

    Google Scholar 

  68. Plummer TH, Elder JH, Alexander S, Phelan AW, Tarentino AL: Demonstration of peptide-N-glycosidase F activity in endo-β-N-acetylglucosaminidase F preparations. J Biol Chem 259:10700–10704, 1984.

    Google Scholar 

  69. Elder JH, Alexander S: Endo-β-N-acetylglucosaminidase F: endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins. Proc Natl Acad Sci USA 79:4540–4544, 1982.

    Google Scholar 

  70. Baenziger JU, Natowicz M: Rapid separation of anionic oligosaccharide species by high performance liquid chromatography. Anal Biochem 112:357–361, 1981.

    Google Scholar 

  71. Krijgshele KR, Scholtens E, Mulder GJ: Serum concentration of inorganic sulfate in mammals: species differences and circadian rhythm. Comp Biochem Physiol 67A:683–686, 1980.

    Google Scholar 

  72. Harpaz N, Schachter H: Control of glycoprotein synthesis: bovine colostrum UDP-N-acetylglucosamine:α-dmannoside β2-N-acetylglucosaminyltransferase I. Separation from UDP-N-acetylglucosamine:α-d-mannoside β2-N-acetylglucosaminyltransferase II, partial purification, and substrate specificity. J Biol Chem 255:4885–4893, 1980.

    Google Scholar 

  73. Harpaz N, Schachter H: Control of glycoprotein synthesis: processing of asparagine-linked oligosaccharides by one or more rat liver Golgi α-d-mannosidases dependent on the prior action of UDP-N-acetylglucosamine:α-dmannoside β2-N-acetylglucosaminyltransferase I. J Biol Chem 255:5894–4902, 1980.

    Google Scholar 

  74. Schachter H, Narasimhan S, Gleeson P, Vella G: Control of branching during the biosynthesis of asparagine-linked oligosaccharides. Can J Biochem Cell Biol 61:1049–1066, 1983.

    Google Scholar 

  75. Vella GJ, Paulsen H, Schachter H: Control of glycoprotein synthesis. IX. A terminal Manα1–3Manβ1-sequence in the substrate is the minimum requirement for UDP-N-acetyl-d-glucosamine:α-d-mannoside (GlcNAc to Manα1–3) β2-N-acetylglucosaminyltransferase I. Can J Biochem Cell Biol 62:409–417, 1984.

    Google Scholar 

  76. Tulsiani DRP, Harris TM, Touster O: Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J Biol Chem 257:7936–7939, 1982.

    Google Scholar 

  77. Tulsiani DRP, Touster O: Swainsonine causes the production of hybrid glycoproteins by human skin fibroblasts and rat liver Golgi preparations. J Biol Chem 258:7578–7585, 1983.

    Google Scholar 

  78. Tulsiani DRP, Broquist HP, Touster O: Marked differences in the Swainsonine inhibition of rat liver lysosomal α-d-mannosidase, rat liver Golgi mannosidase II, and jack bean α-d-mannosidase. Arch Biochem Biophys 236:427–434, 1985.

    Google Scholar 

  79. Elbein AD, Solf R, Dorling PR, Vosbeck K: Swainsonine: an inhibitor of glycoprotein processing. Proc Natl Acad Sci USA 78:7393–7397, 1981.

    Google Scholar 

  80. Elbein AD, Dorling PR, Vosbeck K, Horisberger M: Swainsonine prevents the processing of the oligosaccharide chains of influenza virus hemagglutinin. J Biol Chem 257:1573–1576, 1982.

    Google Scholar 

  81. Merkle RK, Elbein AD, Heifetz A. The effect of Swainsonine and castanospermine on the sulfation of the oligosaccharide chains of N-linked glycoproteins. J Biol Chem 260:1083–1089, 1985.

    Google Scholar 

  82. Green ED Morishima C Boime I Baenziger JU: Structural requirements for sulfation of asparagine-linked oligosaccharides of lutropin. Proc Natl Acad Sci USA 82:7850–7854, 1985.

    Google Scholar 

  83. Hoshina H, Hortin G, Boime I: Rat proopiomelanocortin contains sulfate. Science 217:63–64, 1982.

    Google Scholar 

  84. Bourbonnais Y, Crine P: Post-translational incorporation of [35S]sulfate into oligosaccharide side chains of proopiomelanocortin in rat intermediate lobe cells. J Biol Chem 260:5832–5837, 1985.

    Google Scholar 

  85. Moore HP, Gumbiner B, Kelly RB: A subclass of proteins of sulfated macromolecules secreted by AtT-20 (mouse pituitary tumor) cells is sorted with adrenocorticotropin into dense secretory granules. J Cell Biol 97:810–817, 1983.

    Google Scholar 

  86. Magner JA, Weintraub BD: Thyroid-stimulating hormone subunit processing and combination in microsomal subfractions of mouse pituitary tumor. J Biol Chem 257:6709–6716, 1982.

    Google Scholar 

  87. Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G: The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 246:1461–1467, 1971.

    Google Scholar 

  88. Sairam MR, Bhargavi GN: A role for glycosylation of the a subunit in transduction of biological signal in glycoprotein hormones. Science 229:65–67, 1985.

    Google Scholar 

  89. Wide L: Median charge and charge heterogeneity of human pituitary FSH, LH, TSH: I. Zone electrophoresis in agarose suspension. Acta Endocrinol 109:181–189, 1985.

    Google Scholar 

  90. Wide L: Median charge and charge heterogeneity of human pituitary FSH, LH, TSH: II. Relationship to sex and age. Acta Endocrinol 109:190–197, 1985.

    Google Scholar 

  91. Weise HC, Graesslin D, Lichtenberg V, Rinne G: Polymorphism of human pituitary lutropin (LH): isolation and partial characterization of seven isohormones. FEBS Lett 159:93–96, 1983.

    Google Scholar 

  92. Lichtenberg V, Weise HC, Graesslin D, Bettendorf G: Polymorphism of human pituitary lutropin (LH): effect of the seven isohormones on mouse leydig cell function. FEBS Lett 169:21–24, 1984.

    Google Scholar 

  93. Reader SCJ, Robertson WR, Diczfalusy E: Microheterogeneity of luteinizing hormone in pituitary glands from women of pre- and postmenopausal age. Clin Endocrinol 19:355–363, 1983.

    Google Scholar 

  94. Robertson DM, van Damme MP, Diczfalusy E: Biological and immunological characterization of human luteinizing hormone: I. Biological profile in pituitary and plasma samples after electrofocusing. Mol Cell Endocrinol 9:45–56, 1977.

    Google Scholar 

  95. Hartree AS, Lester JB, Shownkeen RC: Studies of the heterogeneity of human pituitary LH by fast protein liquid chromatography. J Endocrinol 105:405–413, 1985.

    Google Scholar 

  96. van Ginkel LA, Loeber JG: Heterogeneity of human lutropin: detection and identification of α- and β-subunits. Acta Endocrinol 110:182–192, 1985.

    Google Scholar 

  97. Wide L: Male and female forms of human follicle-stimulating hormone in serum. J Clin Endocrinol Metab 55:682–688, 1982.

    Google Scholar 

  98. Wide L, Hobson BM: Qualitative differences in follicle-stimulating hormone activity in the pituitaries of young women compared to that of men and elderly women. J Clin Endocrinol Metab 56:371–375, 1983.

    Google Scholar 

  99. Peckham WD, Knobil E: The effects of ovariectomy, estrogen replacement, and neuraminidase treatment on the properties of the adenohypophysial glycoprotein hormones of the rhesus monkey. Endocrinology 98:1054–1064, 1976.

    Google Scholar 

  100. Peckham WD, Yamaji T, Dierschke DJ, Knobil E: Gonadal function and the biological and physiochemical properties of follicle-stimulating hormone. Endocrinology 92:1660–1666, 1973.

    Google Scholar 

  101. Khan SA, Katzija G, Froysa B, Diczfalusy E: Characterization of various molecular species of follicle-stimulating hormone in baboon pituitary preparations. J Med Primatol 13:295–304, 1984.

    Google Scholar 

  102. Chappel SC, Bethea CL, Spies HG: Existance of multiple forms of follicle-stimulating hormone within the anterior pituitaries of cynomolgus monkeys. Endocrinology 115:452–461, 1984.

    Google Scholar 

  103. Robertson DM, Foulds LM, Ellis S: Heterogeneity of rat pituitary gonadotropins on electrofocusing: differences between sexes and after castration. Endocrinology 111:385–391, 1982.

    Google Scholar 

  104. Keel BA, Grotjan HE: Characterization of rat lutropin charge microheterogeneity using chromatofocusing. Anal Biochem 142:267–270, 1984.

    Google Scholar 

  105. Wakabayashi K, Ozawa K, Hattori M: Sialic acid moiety is responsible for the charge heterogeneity and the biological potency of rat lutropin. Biochem Biophys Res Commun 127:501–508, 1985.

    Google Scholar 

  106. Blum WFP, Riegelbauer G, Gupta D: Heterogeneity of rat FSH by chromatofocusing: studies on in vitro bioactivity of pituitary FSH forms and effect of neuraminidase treatment. J Endocrinol 105:17–27, 1985.

    Google Scholar 

  107. Blum WFP, Gupta D: Heterogeneity of rat FSH by chromatofocusing: studies on serum FSH, hormone released in vitro and metabolic clearance rates of its various forms. J Endocrinol 105:29–37, 1985.

    Google Scholar 

  108. Foulds LM, Robertson DM: Electrofocusing fractionation of follicle-stimulating hormone in pituitary cell culture extracts from male and female rats. Mol Cell Endocrinol 41:129–136, 1985.

    Google Scholar 

  109. Chappel SC, Ramaley JA: Changes in the isoelectric focusing profile of pituitary follicle-stimulating hormone in the developing male rat. Biol Reproduct 32:567–573, 1985.

    Google Scholar 

  110. Miller C, Ulloa-Aquirre A, Hyland L, Chappel S: Pituitary follicle-stimulating hormone heterogeneity: assessment of biologic activities of each follicle-stimulating hormone form. Fertil Steril 40:242–247, 1983.

    Google Scholar 

  111. Chappel SC, Coutifaris C, Jacobs SJ: Studies on the microheterogeneity of follicle-stimulating hormone present within the anterior pituitary gland of ovariectomized hamsters. Endocrinology 110:847–854, 1982.

    Google Scholar 

  112. Ulloa-Aquirre A, Chappel SC: Multiple species of follicle-stimulating hormone exist within the anterior pituitary gland of male golden hamsters. J Endocrinol 95:257–266, 1982.

    Google Scholar 

  113. Chappel SC, Ulloa-Aquirre A, Coutifaris C: Biosynthesis and secretion of follicle-stimulating hormone. Endocrine Rev 4:179–211, 1983.

    Google Scholar 

  114. Baenziger JU: The role of glycosylation in protein recognition. Am J Pathol 121:382–391, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, E.D., Boime, I. & Baenziger, J.U. Differential processing of Asn-linked oligosaccharides on pituitary glycoprotein hormones: implications for biologic function. Mol Cell Biochem 72, 81–100 (1986). https://doi.org/10.1007/BF00230637

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230637

Keywords

Navigation