Skip to main content
Log in

Sexual reproduction in the arum lily family, with emphasis on thermogenicity

  • Review
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Summary

Floral thermogenicity, which is found in several representatives of half a dozen angiosperm families, is most pronounced in the Araceae. It is based on the operation of an “alternative”, cyanide-resistant electron transport chain which, in contrast to the “classic” cytochrome oxidase system, produces little ATP; most of the energy originally locked up in the respiratory substrate usually starch — is therefore liberated in the form of heat. The biological function of this (biochemically wasteful) system is to release the heat to serve as a “volatilizer” for the floral odors (often containing aliphatic amines, indole and skatole) that attract the insect pollinators. This makes the survival value of thermogenesis (for the plant species) immediately clear. Thermogenicity is under tight biological control, as demonstrated by the fact that the same ceiling temperature is always reached, regardless of ambient temperature. In Eastern skunk cabbage (Symplocarpus foetidus), which flowers very early in spring, that ceiling is about 20° C, in tropical forms such as Xanthosoma robustum and Philodendron selloum, it lies in the 42°–44° C range. In several instances, e.g., in Arum and in Sauromatum, the voodoo lily, thermogenicity manifests itself as a flare-up of only a few hours' duration, a “respiratory explosion” that can lead to rates of metabolism that compare favorably with those of a hovering hummingbird. The metabolic peak is always reached at a particular time of day, which is different for the different arum lily species, and thus reduces competition for pollinators. The odors that accompany the heat are also very characteristic, appealing to different pollinator classes and further reducing such competition. In the voodoo lily and in Arum, the primary site for the production of both heat and odor is the naked appendix of the inflorescence, which acts as a specialized “osmophore” or odor carrier. The first explosion may be followed by another one several hours later, which manifests itself in the floral chamber of the inflorescence and is under strict photoperiodic control. In Sauromatum, the first metabolic explosion is triggered by a plant hormone, originally referred to as “calorigen,” which originates in the primordia of the staminate flowers and moves from there into the appendix where it exerts its action after a lag-time of about a day — an indication that synthesis of new enzymatic protein (through unblocking of certain genes?) may well be involved. In 1987, calorigen was shown to be identical with salicylic acid. This compound was already known to induce flowering in certain duck-weeds, Lemnaceae, which until recently were regarded as belonging to the same family as arum lilies. In certain water lilies (Nymphaeaceae), thermogenicity is combined with a pollination syndrome very similar to that of Arum and Sauromatum but involving temporary trap flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold CG (1959) Die Blütenöffnung bei Oenothera in Abhängigkeit vom Licht-Dunkel-Rhythmus. Planta 53:198–211

    Google Scholar 

  • Bonner WD, Rich PR (1983) p-Quinol oxygen reductase, a new copper oxidase in plant mitochondria. Plant Physiol [Suppl 19] 72

  • Buggeln RG, Meeuse BJD (1971) Hormonal control of the respiratory climacteric in Sauromatum guttatum (Araceae). Can J Bot 49:1373–1377

    Google Scholar 

  • Buggeln RG, Meeuse BJD, Klima JR (1971) Control of blooming in Sauromatum guttatum Schnott (Araceae) by darkness. Can J Bot 49:1025–1031

    Google Scholar 

  • Bukowiecki LJ, Follea N, Lupien J, Paradis A (1981) Metabolic relationships between lipolysis and respiration in rat brown adipocytes. J Biol Chem 256:12840–12848

    Google Scholar 

  • Cannon B, Nedergaard J, Sundin U (1981) Thermogenesis, brown fat, and thermogenin. In: Mussacchua X, Jansky L (eds) Survival in the cold. Hibernation and other adaptations. Elsevier/North-Holland, Amsterdam, pp 99–120

    Google Scholar 

  • Carnal NW, Black CC (1979) Pyrophosphate-dependent 6-phosphofructokinase, a new glycolytic enzyme in pineapple leaves. Biochem Biophys Res Commun 86:20–26

    Google Scholar 

  • Caspary R (1856) Über Wärmeentwicklung in der Blüte von Victoria regia. Monatsber Königl Akad Wiss Berlin Dec 1855:711–756

    Google Scholar 

  • Chauveau M, Lance C (1982) Respiration et thermogénèse chez les Aracées. Bull Soc Bot Fr 129:123–134

    Google Scholar 

  • Chen J, Meeuse BJD (1971) Production of free indole by some aroids. Acta Bot Neerl 20:627–635

    Google Scholar 

  • Chen J, Meeuse BJD (1975) Purification and partial characterization of two biologically active compounds from the inflorescence of Sauromatum guttatum Schott. Plant Cell Physiol 16:1–11

    Google Scholar 

  • Cleland CF, Ajami A (1974) Identification of the flower-inducing factor isolated from aphid honey dew as being salicylic acid. Plant Physiol 54:904–906

    Google Scholar 

  • Conn EE (1981) Cyanogenic glycosides. In: Stumpf P, Conn EE (eds) The biochemistry of plants. Academic Press, New York London Toronto, pp 479–500

    Google Scholar 

  • Cramer JM, Meeuse ADJ, Teunissen PA (1975) A note on the pollination of nocturnally flowering species of Nymphaea. Acta Bot Neerl 24:489–490

    Google Scholar 

  • Croat TB (1980) Flowering behavior of the neotropical genus Anthurium (Araceae). Am J Bot 67:888–904

    Google Scholar 

  • Cséke C, Weenden NF, Buchanan BB, Uyeda K (1982) A special fructose bisphosphate functions as a cytoplasmic regulatory metabolite in green leaves. Proc Natl Acad Sci USA 79:4322–4326

    Google Scholar 

  • Dizengremel P, Lance C (1982) La respiration insensible au cyanure chez les végétaux. Bull Soc Bot Fr 129:19–36

    Google Scholar 

  • Dormer KJ (1960) The truth about pollination in Arum. New Phytol 59:298–301

    Google Scholar 

  • Elthon TE, McIntosh L (1986) Characterization and solubilization of the alternative oxidase of Sauromatum guttatum mitochondria. Plant Physiol 82:1–6

    Google Scholar 

  • Elthon TE, McIntosh L (1987) The alternative oxidase of Sauromatum guttatum appendix mitochondria: purification, production of antibodies, and regulation of expression. Item no 688. Plant Physiol [Suppl] 83:114

    Google Scholar 

  • Elthon TE, Stewart CR, McCoy CA, Bonner WD, Jr (1986) Alternative respiratory path capacity in plant mitochondria: effect of growth temperature, the electrochemical gradient, and assay pH. Plant Physiol 80:378–383

    Google Scholar 

  • Genevois ML (1929) Sur la fermentation et sur la respiration chez les végétaux chlorophylliens. Rev Gen Bot 41:252–271

    Google Scholar 

  • Goldwasser LP (1987) PhD thesis, University of California, Davis

    Google Scholar 

  • Gottsberger G (1985) Floral ecology. In: Behnke H-D, Esser K, Kubitzki K, Runge M, Ziegler H (eds) Progress in botany, vol 47. Springer, Berlin Heidelberg New York, pp 384–417

    Google Scholar 

  • Gottsberger G (1986a) Some pollination strategies in neotropical savannas and forests. Plant System Evol 152:29–45

    Google Scholar 

  • Gottsberger G (1986b) Wärmeentwicklung von Philodendron-Blüten. Naturwiss Rundsch 39:350–351

    Google Scholar 

  • Gottsberger G, Amaral A, Jr (1984) Pollination strategies in Brazalian Philodendron species. Ber Dtsch Bot Ges 97:391–410

    Google Scholar 

  • Hartmann T, Ihlert HI, Steiner M (1972) Aldehydaminierung, der bevorzugte Biosyntheseweg für primäre, aliphatische Mono-amine in Blütenpflanzen. Z Pflanzenphysiol 68:11–18

    Google Scholar 

  • Henry MF, Nyns EJ (1975) Cyanide-resistant respiration. An alternate mitochondrial pathway. Cell Biochem 4:1–65

    Google Scholar 

  • Herk AWH van (1937a) Die chemischen Vorgänge im Sauromatum-Kolben. I. Mitteilung. Rec Trav Bot Neerl 34:69–156

    Google Scholar 

  • Herk AWH van (1937b) Die chemischen Vorgänge im Sauromatum-Kolben. II. Mitteilung. Proc Ned Akad Wet 40:607–614

    Google Scholar 

  • Herk AWH van (1937c) Die chemischen Vorgänge im Sauromatum-Kolben. III. Mitteilung. Proc K Ned Akad Wet 40:709–719

    Google Scholar 

  • Hers H-G, Schaftingen E van (1982) Fructose 2,6-bisphosphate 2 years after its discovery. Biochem J 206:1–12

    Google Scholar 

  • Hers H-G, Hue L, Schaftingen E van (1982) Fructose 2,6-bisphosphate. Trend Biochem Sci 7:329–331

    Google Scholar 

  • Hess CM, Meeuse BJD (1968a) Factors contributing to the respiratory flare-up in the appendix of Sauromatum (Araceae). I. Proc K Ned Akad Wet Ser C 74:443–455

    Google Scholar 

  • Hess CM, Meeuse BJD (1968b) Factors contributing to the respiratory flare-up in the appendix of Sauromatum (Araceae). II. Proc K Ned Akad Wet Ser C 74:456–471

    Google Scholar 

  • Himms-Hagen J (1970) Adrenergic receptors for metabolic responses in adipose tissue. Fed Proc 29:1388–1401

    Google Scholar 

  • Himms-Hagen J (1976) Cellular thermogenesis. Annu Rev Physiol 33:315–351

    Google Scholar 

  • Hösel W, Nahrstedt A (1975) Spezifische Glukosidasen für das Cyanglucosid Triglochinin. Reinigung und Charakterisierung von β-Glucosidasen aus Aloensid macrorhizd Schott. Hoppe-Seyler's Z Physiol Chem 356:1265–1275

    Google Scholar 

  • Huq S, Palmer JM (1978) Isolation of a cyanide-resistant duroquinol oxidase from Arum maculatum mitochondria. FEBS Lett 95:217–200

    Google Scholar 

  • James WO, Elliott DC (1955) Cyanide-resistant mitochondria from the spadix of an Arum. Nature 174:89

    Google Scholar 

  • Jones DA (1973) Co-evolution and cyanogenesis. In: Heywood VH (ed) Taxonomy and ecology. Academic Press, New York London, pp 213–242

    Google Scholar 

  • Jones DA (1979) Chemical defense: primary or secondary function? Am Nat 113:445–451

    Google Scholar 

  • Knoch E (1899) Untersuchungen über die Morphologie, Biologie und Physiologie der Blüte von Victoria regia. Biol Bot 47:1–60

    Google Scholar 

  • Knoll F (1926) Insekten und Blumen. Experimentelle Arbeiten zur Vertiefung unserer Kenntnisse über die Wechselbeziehungen zwischen Pflanzen und Tieren. IV. Die Arum-Blütenstände und ihre Besucher. Abh Zoot Boot Ges (Wien) 12:383–481

    Google Scholar 

  • Knutson RM (1972) Temperature measurements of the spadix of Symplocarpus foetidus (L). Nutt. Am Midl Nat 88:251–254

    Google Scholar 

  • Knutson RM (1974) Heat production and temperature regulation in Eastern Skunk Cabbage. Science 186:746–747

    Google Scholar 

  • Knutson RM (1979) Plants in heat. Nat Hist 88:42–47

    Google Scholar 

  • Lambers H (1980) The physiological significance of cyanideresistant respiration. Plant Cell Environ 3:293–302

    Google Scholar 

  • Lambers H (1982) Cyanide-resistant respiration: a non-phosphorylating electron transport pathway acting as an energy overflow. Physiol Plant 55:478–485

    CAS  Google Scholar 

  • Lambers H (1985) Respiration in intact plants and tissues: its regulation and dependence on environmental factors, metabolism and invaded organisms. In: Douce R, Day DA (eds) Higher plant cell respiration. (Encyclopedia of plant physiology, NS, vol 18) Springer, Berlin Heidelberg New York, pp 418–473

    Google Scholar 

  • Lance C (1972) La respiration de l'Arum maculatum au cours du développement de l'inflorescence. Ann Sci Nat Bot (12ième série) 13:477–495

    Google Scholar 

  • Lance C (1981) Cyanide-insensitive respiration in fruits and vegetables. In: Friend J, Rhoades MJC (eds) Recent advances in the biochemistry of fruits and vegetables. Academic Press, London New York, pp 63–87

    Google Scholar 

  • La Noue KF (1986) Regulation of energy coupling in brown fat. In: Fiskom G (ed) Mitochondrial physiology and pathology. (Advanced cell biology series) Van Nostrand Reinhold, New York, pp 1–39

    Google Scholar 

  • Laties GG (1982) The cyanide-resistant, alternative path in higher plant respiration. Annu Rev Plant Physiol 33:519–555

    Google Scholar 

  • Lehninger AL (1975) The molecular basis of cell structure and function. In: Lehninger AL (ed) Biochemistry, 2nd edn. Worth, New York, pp 387–413

    Google Scholar 

  • Leick E (1910) Untersuchungen über die Blütenwärme der Araceen. Dissertation, Greifswald

  • Leick E (1913) Beiträge zum Wärmephenomen der Araceen-Blütenstände. I. Teil. Mitt Naturwiss Verein Neuvorpommern Rügen 45:1–32

    Google Scholar 

  • Leick E (1915) Die Erwärmungstypen der Araceen und ihre biologische Bedeutung. Ber Dtsch Bot Ges 33:518–536

    Google Scholar 

  • Lin CS, Klingenberg M (1980) Isolation of the uncoupling protein from brown adipose tissue mitochondria. Biochemistry 21:2950–2956

    Google Scholar 

  • Lindberg O (1970) Brown adipose tissue. American Elsevier, New York

    Google Scholar 

  • Lindberg O, Nedergaard J, Cannon B (1981) Thermogenic mitochondria. In: Lee CP, Schatz G, Dallner G (eds) Mitochondria and microsomes. Addison-Wesley, Reading, Mass, pp 93–120

    Google Scholar 

  • Lovejoy TE (1978) Royal water lilies: truly Amazonian. Smithsonian 9:78–84

    Google Scholar 

  • Matile P (1958) Über die Lichtabhängigkeit der Blütenwärme von Arum italicum. Ber Schweiz Bot Ges 68:295–306

    Google Scholar 

  • McIntosh L, Meeuse BJD (1978) Control of the development of cyanide-resistant repiration in Sauromatum guttatum (Araceae). In: Ducet G, Lance C (eds) Plant mitochondria. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 339–345

    Google Scholar 

  • Meeuse BJD (ed) (1961) The story of pollination. Ronald Press, New York

    Google Scholar 

  • Meeuse BJD (1966) The voodoo lily. Sci Am 215:80–88

    Google Scholar 

  • Meeuse BJD (1975) Thermogenic respiration in aroids. Annu Rev Plant Physiol 26:117–126

    Google Scholar 

  • Meeuse BJD (1985) Physiological and biochemical aspects of thermogenic respiration in the aroid appendix. In: Palmer JM (ed) The physiology and biochemistry of plant respiration. Cambridge University Press, Cambridge, pp 47–58

    Google Scholar 

  • Meeuse BJD (1988) Arum. In: Halevy AH (ed) Handbook of flowering VII. CRC Press, Boca Raton, Fla (in press)

    Google Scholar 

  • Meeuse BJD, Buggeln RG (1969) Time, space, light and darkness in the metabolic flare-up of the Sauromatum appendix. Acta Bot Neerl 11:159–172

    Google Scholar 

  • Meeuse BJD, Hatch MH (1960) Beetle pollination in Dracunculus and Sauromatum (Araceae). Coleopt Bull 14:70–74

    Google Scholar 

  • Meeuse BJD, Schneider EL (1979/1980) Nymphaea revisited. A preliminary communication. Isr J Bot 28:56–79

    Google Scholar 

  • Meeuse BJD, Schneider EL, Hess CM, Patt JM, Kirkwood K (1984) Activation and possible role of the “food-bodies” of Sauromatum (Araceae). Acta Bot Neerl 33:483–496

    Google Scholar 

  • Mitchell P (1976) Vectorial chemistry and the molecular mechanisms of chemiosmotic coupling. Biochem Soc Trans 4:399–430

    Google Scholar 

  • Miyake K (1898) Physiological observations on Nelumbo nucifera. Bot Mag 12:85–101, 112–117

    Google Scholar 

  • Moore Al, Rich PR (1980) The bioenergetics of plant mitochondria. Trends Biochem Sci 5:284–288

    Google Scholar 

  • Nagy KA, Odell DK, Seymour RS (1972) Temperature regulation by the inflorescence of Philodendron. Science 178:1195–1197

    Google Scholar 

  • Nahrstedt A (1981) Isolation and structure elucidation of cyanogenic glycosides. In: Vennesland B, Conn EE, Knowles CJ, Westley J, Wissing F (eds) Cyanide in biology. Academic Press, London New York, pp 145–181

    Google Scholar 

  • Nanda KK, Kumar S, Sood V (1976) Effect of gibberellic acid and some phenols on flowering of Impatiens balsamina, a qualitative short-day plant. Physiol Plant 38:53–56

    Google Scholar 

  • Nicholls DG (1982) Bioenergetics: an introduction to the chemiosmotic theory. Academic Press, London New York

    Google Scholar 

  • Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64:1–62

    CAS  PubMed  Google Scholar 

  • Okunuki K (1932) Über den Gaswechsel der Pollen. Bot Mag 46:701–721

    Google Scholar 

  • Okunuki K (1939) Über den Gaswechsel der Pollen. II. Acta Phytochim 11:27–64

    Google Scholar 

  • Palmer JM (1976) The organization and regulation of electron transport in plant mitochondria. Annu Rev Plant Physiol 27:133–157

    Google Scholar 

  • Plas LHW van der (1981) CN-resistente ademhaling by planten: energieverspilling of nuttige aanpassing? Vakbl Biol 61:478–482

    Google Scholar 

  • Prance GT, Arias JR (1975) A study of the floral biology of Victoria amazonica (Poepp.) Sowerby (Nymphaeaceae). Acta Amazonica 5:109–139

    Google Scholar 

  • Raskin J, Ehman A, Melander WR, Meeuse BJD (1987) Salicylic acid is a natural inducer of heat production in plants. Item no 691. Plant Physiol [Suppl] 83:115

    Google Scholar 

  • Reeves RE, South DJ, Blytt HJ, Warren LG (1974) Pyrophosphate: D-fructose 6-phosphate 1-phosphotransferase. J Biol Chem 249:7737–7741

    Google Scholar 

  • Reeves RE, Serrano R, South DJ (1976) 6-Phosphofructokinase (pyrophosphate). Properties of the enzyme from Entamoeba histolytica and its reaction mechanism. J Biol Chem 251:2958–2962

    Google Scholar 

  • Rich PR (1978) Quinol oxidation in Arum maculatum mitochondria and its application to the assay, solubilisation and partial purification of the alternative oxidase. FEBS Lett 96:252–256

    Google Scholar 

  • Rosenthal GA, Janzen DH (1979) Herbivores, their interaction with secondary plant metabolites. Academic Press, New York London

    Google Scholar 

  • Sabularse DC, Anderson RL (1981) Inhibition of fructose 1,6-bisphosphate: a naturally occurring activator for inorganic pyrophosphate: D-fructose-6-phosphate 1-phosphotransferase in plants. Biochem Biophys Res Commun 103:848–855

    Google Scholar 

  • Schaftingen E van, Hers MG (1981) Inhibition of fructose 1,6-bisphosphatase by fructose-2,6 bisphosphate. Proc Natl Acad Sci USA 78:2861–2863

    Google Scholar 

  • Schmucker T (1925) Physiologie von Arum maculatum. Flora 118:460–475

    Google Scholar 

  • Schnepf E, Czygan F-C (1966) Feinbau und Carotinoide von Chromoplasten im Spadix-Appendix von Typhonium und Arum. Z Pflanzenphysiol 54:345–355

    Google Scholar 

  • Schonbaum GR, Bonner WD, Storey BI, Bahr JR (1971) Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiol 47:124–128

    Google Scholar 

  • Signol M, Lance C (1975) Relation entre l'évolution ultrastructurale des mitochondries et l'activité respiratoire du spadice d'Arum maculatum L. au cours de son développement. Physiol Veg 13:549–562

    Google Scholar 

  • Simon EW (1962) Valine decarboxylation in Arum spadix. J Exp Bot 13:1–4

    Google Scholar 

  • Simon EW, Chapman TA (1961) The development of mitochondria in Arum spadix. J Exp Bot 12:414–420

    Google Scholar 

  • Smith RE, Horwitz BA (1969) Brown fat and thermogenesis. Physiol Rev 49:330–425

    Google Scholar 

  • Smith BN, Meeuse BJD (1966) Production of volatile amines and skatole at anthesis in some arum lily species. Plant Physiol 41:343–347

    Google Scholar 

  • Solomos T (1977) Cyanide-resistant respiration in higher plants. Annu Rev Plant Physiol 28:279–297

    Google Scholar 

  • Stitt M (1987) Fructose 2,6-bisphosphate and plant carbohydrate metabolism. Plant Physiol 84:201–204

    Google Scholar 

  • Stitt M, Herzog G, Gerhardt R, Heldt HW (1984a) Control of photosynthetic sucrose synthesis by fructose 2,6-bisphosphate. II. Partitioning between sucrose and starch. Plant Physiol 75:554–560

    Google Scholar 

  • Stitt M, Herzog B, Gerhardt R, Kurzel B, Heldt HW, Cséke C, Buchanan BB (1984b) Regulation of photosynthetic sucrose synthesis by fructose 2,6 bisphosphate. In: Sybesma C (ed) Proceedings of the 6th International Congress on Photosynthesis, 1984. Junk, The Hague, pp 609–611

    Google Scholar 

  • Takimoto A (1987) Current research activities at the laboratory of applied botany, Kyoto University, Kyoto, Japan. Flowering Newslett 3:7–9

    Google Scholar 

  • Valla JJ, Cirino DJ (1972) Biologia floral del Irupé Victoria cruziana Orb. (Nymphaeaceae). Darwiniana 17:477–500

    Google Scholar 

  • Vogel S (1963) Duftdrüsen im Dienste der Bestäubung. Abh Math Naturwiss Kl Akad Wissensch Literatur Mainz 10:599–763

    Google Scholar 

  • Walker DB (1980) Structural and histochemical study of the heat-generating sterile male flowers in Philodendron selloum. Bot Soc Am Misc Ser 158:122

    Google Scholar 

  • Walker DB, Gysi J, Sternberg L, DeNiro MJ (1983) Direct respiration of lipids during heat production in the inflorescence of Philodendron selloum. Science 220:419–421

    Google Scholar 

  • Wood HG, O'Brien WE, Michaels G (1977) Properties of carboxytransphosphorylase; pyruvate, phosphate dikinase; pyrophosphate-phosphofructokinase and pyrophosphateacetate kinase and their roles in the metabolism of inorganic pyrophosphate. Adv Enzymol 45:85–155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of A.W.H. van Herk, pioneer in the study of arum lilies, superb lecturer, and unselfish human being

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meeuse, B.J.D., Raskin, I. Sexual reproduction in the arum lily family, with emphasis on thermogenicity. Sexual Plant Reprod 1, 3–15 (1988). https://doi.org/10.1007/BF00227016

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227016

Key words

Navigation