Skip to main content
Log in

Magic angle spinning NMR observation of sodium site exchange in nepheline at 500° C

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Dynamics in minerals at time scales from seconds to microseconds are important in understanding mechanisms of displacive phase transitions, diffusion, and conductivity. High resolution, magic-angle-spinning (MAS) NMR spectroscopy can directly show the rates of exchange among sites, potentially providing less model-dependent information than more traditional NMR relaxation time measurements. Here we use a newly developed high temperature MAS probe (Doty Scientific, Inc.) to observe the exchange of Na+ among the alkali sites in a high-Na nepheline at temperatures as high as 500° C. Observed exchange rates are consistent with correlation times derived from cation diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carduner KR, Farrington GC, White D, Villa M (1983) Structure and Na+ dynamics in β- and β″-aluminas at low temperature: a 23Na NMR study. Solid State Ionics 9&10:339–346

    Google Scholar 

  • Dollase WA (1970) Least-squares refinement of the structure of a plutonic nepheline. Z Kristallogr 132:27–44

    Google Scholar 

  • Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley, New York

    Google Scholar 

  • Farnan I, Stebbins JF (1988) Structure and dynamics of Li4SiO4/ Li2SiO3 eutectic composition observed by high temperature 29Si NMR. Eos 69:1482

    Google Scholar 

  • Foreman N, Peacor DR (1970) Refinement of the nepheline structure at several temperatures. Z Kristallogr 132:45–70

    Google Scholar 

  • Fuda K, Kishio K, Yamauchi S, Fueki K (1985) Study of vacancy motion in Y2O3-doped CeO2 by 17O NMR technique. J Phys Chem Solids 46:1141–1146

    Google Scholar 

  • Gregorkiewitz M (1984) Crystal structure and Al/Si-ordering of a synthetic nepheline. Bull Minéral 107:499–507

    Google Scholar 

  • Gregorkiewitz M (1986) Alkali diffusion in M′(AlSiO4) compounds with frameworks of the tridymite topology and its variants. Solid State Ionics 18&19:534–538

    Google Scholar 

  • Hahn T, Buerger MJ (1955) The detailed structure of nepheline, KNa3Al4Si4O16. Z Kristallogr 106:308–338

    Google Scholar 

  • Henderson CMB, Roux J (1977) Inversions in sub-potassic nephelines. Contrib Mineral Petrol 61:279–298

    Article  Google Scholar 

  • Hendrickson JR, Bray PJ (1974) Nuclear magnetic resonance studies of 7Li ionic motion in alkali silicate and borate glasses. J Chem Phys 61:2754–2764

    Article  Google Scholar 

  • Hovis GL, Roux J, Stebbins JF, Clare A (1989) Nepheline-kalsilite crystalline solutions. Eos 70:353

    Google Scholar 

  • Liu SB, Stebbins JF, Schneider E, Pines A (1988) Diffusive motion in alkali silicate melts: an NMR study at high temperature. Geochim Cosmochim Acta 52:527–538

    Google Scholar 

  • Kanert O (1985) Dynamical properties of defects in insulating solids by nuclear magnetic resonance. Cryst Lattice Defects Amorph Mater 12:41–57

    Google Scholar 

  • Kirkpatrick RJ (1988) MAS NMR spectroscopy of minerals and glasses. In: Hawthorne FC (ed) Spectroscopic Methods in Mineralogy and Geology. Mineral Soc Am, Washington DC, pp 341–404

    Google Scholar 

  • McConnell JDC (1981) Time-temperature study of the intensity of satellite reflections in nepheline. Am Mineral 66:990–996

    Google Scholar 

  • Müller D (1982) Zur Bestimmung chemischer Verschiebungen der NMR-Frequenzen bei Quadrupolkernen aus den MAS-NMRSpektren. Ann Phys Leipzig 39:451–460

    Google Scholar 

  • Phillips BL, Kirkpatrick RJ, Hovis GL (1988) 27Al, 29Si, and 23Na MAS NMR study of an Al, Si ordered alkali feldspar solid solution series. Phys Chem Minerals 16:262–275

    Article  Google Scholar 

  • Roth G, Böhm H (1986) Ionic conductivity of sodium nepheline crystals. Solid State Ionics 18&19:553–556

    Google Scholar 

  • Schweikert E, Mali M, Roos J, Brinkman D, Richards PM, Biefeld RM (1983) Cooperative lithium motion and NMR relaxation of 7Li by paramagnetic impurities in β-eucryptite (LiAlSiO4). Solid State Ionics 9&10:1317–1324

    Google Scholar 

  • Shannon RD, Berzins T (1979) Ionic conductivity in low carnegieite compositions based on NaAlSiO4. Mater Res Bull 14:361–367

    Article  Google Scholar 

  • Stebbins JF (1988) NMR spectroscopy and dynamical processes in mineralogy and geochemistry. In: Hawthorne FC (ed) Spectroscopic Methods in Mineralogy and Geology. Mineralogical Society of America, Washington DC, pp 405–430

    Google Scholar 

  • Stebbins JF, Murdoch JB, Carmichael ISE, Pines A (1986) Defects and short range order in nepheline group minerals: a silicon-29 nuclear magnetic resonance study. Phys Chem Mineral 13:371–381

    Google Scholar 

  • Tuttle OF, Smith JV (1958) The nepheline-kalsilite system: I. X-ray data for the crystalline phases. Am J Sci 256:571–589

    Google Scholar 

  • Van Tendeloo G, Ghose S, Amelinckx S (1989) A dynamical model for the P\(\bar 1\)−I\(\bar 1\) phase transition in anorthite, CaAl2Si2O8. Phys Chem Minerals 16:311–319

    Article  Google Scholar 

  • Weiss CA Jr, Kirkpatrick RJ, Cygan RT (1988) 133Cs NMR spectroscopy of Cs-Exchanged layer silicates. Eos 69:501

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stebbins, J.F., Farnan, I., Williams, E.H. et al. Magic angle spinning NMR observation of sodium site exchange in nepheline at 500° C. Phys Chem Minerals 16, 763–766 (1989). https://doi.org/10.1007/BF00209699

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209699

Keywords

Navigation