Skip to main content
Log in

Climatology and interannual variability simulated by the ARPEGE-OPA coupled model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A 10-year simulation with a coupled ocean-atmosphere general circulation model (CGCM) is presented. The model consists of the climate version of the Météo-France global forecasting model, ARPEGE, coupled to the LODYC oceanic model, OPA, by the CERFACS coupling package OASIS. The oceanic component is dynamically active over the tropical Pacific, while climatological time-dependent sea surface temperatures (SSTs) are prescribed outside of the Pacific domain. The coupled model shows little drift and exhibits a very regular seasonal cycle. The climatological mean state and seasonal cycle are well simulated by the coupled model. In particular, the oceanic surface current pattern is accurately depicted and the location and intensity of the Equatorial Undercurrent (EUC) are in good agreement with available data. The seasonal cycle of equatorial SSTs captures quite realistically the annual harmonic. Some deficiencies remain including a weak zonal equatorial SST gradient, underestimated wind stress over the Pacific equatorial band and an additional inter-tropical convergence zone (ITCZ) south of the equator in northern winter and spring. Weak interannual variability is present in the equatorial SST signal with a maximum amplitude of 0.5°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnett TP, Graham NE, Cane MA, Zebiak SE, Dolan SC, O'Brien JJ, Legeler DM (1988) On the prediction of the El Nino of 1986–1987. Science 241:192–196

    Google Scholar 

  • Belamari S, Terray L (1993) Simulation of the 1986–1987 El Niño and 1988 La Niña events with a high resolution tropical Pacific ocean general circulation model. CERFACS Techn Rep, CERFACS STR/CMGC/93-30 (to be submitted to J Phys Oceanogr)

  • Blanke B, Delecluse P (1993) Low frequency variability of the tropical Atlantic ocean simulated by a general circulation model with mixed layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Bougeault P (1985) A simple parameterization of the large-scale effects of deep cumulus convection. Mon Weather Rev 113:2108–2121

    Article  Google Scholar 

  • Busalacchi AJ, McPhaden MJ, Picaut J (1994) Variability in equatorial Pacific sea surface topography during the verification phase of the TOPEX/Poseidon mission. J Geophys Res 99(C12):24725–24738

    Google Scholar 

  • Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecasts of El Niño. Nature 321:827–832

    Google Scholar 

  • Dandin P (1993) Variabilitésse frúency simulée dans l'océan Pacifique tropical. Thè de doctorat de luniversité Paris 6

  • Delecluse P, Madec G, Imbard M, Levy C (1993) OPA version 7 Ocean General Circulation Model reference manual. LODYC, Internal Rep 93/05

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The climate version of Arpege/IFS: a contribution to the French community climate modelling. Clim Dyn 10:249–266

    Article  Google Scholar 

  • Deser C, Wallace JM (1990) Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J Clim 3:1254–1281

    Google Scholar 

  • ETOP5 (1986) 5′ × 5′ topography and elevation. Marine Geology and Geophysics Division, National Geophysical Data Center

  • Fujio S, Imasato N (1991) Diagnostic calculation for circulation and water mass movement in the deep Pacific. J Geophys Res 96:759–774

    Google Scholar 

  • Geleyn JF (1987) Use of a modified Richardson number for parameterizing the effect of shallow convection. J Meteorol Soc Japan, special NWP Symp Vol: 141–149

  • Geleyn JF, Hollingsworth A (1979) An economical analytic method for the computation of the interaction between scattering and line absorption of radiation. Beit Phys Atmos 52:1–16

    Google Scholar 

  • Halpern D, Weisberg R (1989) Upper ocean thermal flow fields at 0°, 28°W (Atlantic) and 0°, 140°W (Pacific) during 1983–1985. Deep-Sea Res 36:406–418

    Google Scholar 

  • Halpern D, Knox RA, Luther DS, Philander SGH (1989) Estimates of equatorial upwelling between 140°W and 110°W during 1984. J Geophys Res 94(C6):8018–8020

    Google Scholar 

  • Horel JD (1982) On the annual cycle of the tropical Pacific atmosphere and ocean. Mon Weather Rev 110:1863–1878

    Google Scholar 

  • Lau NC (1985) Modelling the seasonal dependence of the atmospheric response to observed El Niños in 1962–1976. Mon Weather Rev 113:1970–1996

    Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean, NOAA Prof Pap

  • Louis JF, Tiedke M, Geleyn JF (1982) A short history of the operational PBL-parameterization at ECMWF. In: Proc ECMWF Workshop Planetary Boundary Layer Parameterization, 25–27 November 1981, pp 59–80, ECMWF, Shinfield Park, Reading, UK

    Google Scholar 

  • Marti O, Madec G, Delecluse P (1992) Comment on “Net diffusivity in ocean general circulation models with non uniform grid“. J Geophys Res 97(C8):12763–12766

    Google Scholar 

  • McPhaden MJ, McCarthy M (1992) Mean seasonal cycles and interannual variation at 0°, 110°W and 0°, 140°W during 1980–1991. Tech Rep, ERL-PMEL, NOAA 95

  • Mechoso CR, Kitoh A, Moorthi S, Arakawa A (1987) Numerical simulations of the atmospheric response to a sea surface temperature anomaly over the equatorial eastern Pacific ocean. Mon Weather Rev 115:2938–2956

    Google Scholar 

  • Mechoso CR, Robertson AW, Barth N, Davey MK, Delecluse P, Gent PR, Ineson S, Kirtman B, Latif M, Le Trent H, Nagai T, Neelin JD, Philander SGH, Polcher J, Schopf PS, Stockdale T, Suarez MJ, Terray L, Thual O, Tribbia J (1995) The seasonal cycle over the tropical Pacific in general circulation models. Mon Weather Rev (in press)

  • Miller MJ, Beljaars ACM, Palmer TN (1991) The sensitivity of the ECMWF model to the parameterization of evaporation from the tropical oceans. J Clim 5:418–434

    Google Scholar 

  • Millero FJ, Poisson A (1981) International one-atmosphere equation of state of sea-water. Deep-Sea Res 28A:625–629

    Google Scholar 

  • Mitchell TP, Wallace JM (1992) The annual cycle equatorial convection and sea surface temperature. J Clim 5:1140–1156

    Google Scholar 

  • Neelin JD, Latif M, Allaart MAF, Cane MA, Cubasch U, Gates WL, Gent PR, Ghil M, Gordon C, Lau NC, Mechoso CR, Meehl GA, Oberhuber JM, Philander SGH, Schopf PS, Sperber KR, Sterl A, Tokioka T, Tribbia J, Zebiak SE (1992) Tropical air-sea interaction in general circulation models. Clim Dyn 7:73–104

    Google Scholar 

  • Oberhuber JM (1988) An atlas based on the CORDS data set: the budget of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean. Max-Planck-Institut für Meteorologie Rep 15

  • Palmer TN, Mansfield DA (1986) A study of wintertime circulation anomalies during past El Niños events using a high-resolution general circulation model. Part I: influence of model climatology. Q J R Meteorol Soc 112:613–638

    Google Scholar 

  • Philander SGH, Seigel AD (1985) Simulation of the El Niño of 1982–1983. In: Nihoul JCJ (ed) Coupled ocean-atmosphere models. Amsterdam, Elsevier Oceanography Ser 40:517–541

    Google Scholar 

  • Philander SGH, Pacanowski RC, Lau NC, Nath MJ (1991) A simulation of the Southern Oscillation with a global atmospheric GCM coupled to a high-resolution, tropical Pacific ocean GCM. J Clim 5:308–329

    Google Scholar 

  • Reverdin G, Delecluse P, Levy C, Andrich P, Morliere A, Verstraete JM (1991) The near surface tropical Atlantic in 1982–84. Results from a numerical simulation and a data analysis. Prog Oceanogr 27:273–340

    Google Scholar 

  • Reynolds RW (1988) A real-time global sea surface temperature analysis. J Clim 1:75–86

    Article  Google Scholar 

  • Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120:303–325

    Article  Google Scholar 

  • Sarmiento JL, Bryan K (1982) An ocean transport model for the north Atlantic. J Geophys Res 87:394–408

    Google Scholar 

  • Stephenson D, Royer JF (1994) GCM simulations of the Southern Oscillation for 1979–1988. Clim Dyn (in press)

  • Terray L (1994) The OASIS Coupler User Guide Version 1.0, CERFACS Technical Report, CERFACS TR/CMGC/94-33

  • Trenberth KE (1984) Signal versus noise in the Southern Oscillation. Mon Weather Rev 112:326–332

    Google Scholar 

  • Unesco (1983) Algorithms for computation of fundamental property of sea water, Unesco Techn Pap Marine Science, 44

  • Waliser DE, Gautier C (1993) A satellite-derived climatology of the ITCZ. J Clim 6:2162–2174

    Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans Am Geophys Union 72:441, 445–446

    Google Scholar 

  • Wright PB (1988) An atlas based on the COADS data set: field of mean wind, cloudiness and humidity at the surface of the global ocean. Max-Planck-Institut ftir Meteorologic Rep 14

  • Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res 90(C4):7129–7132

    Google Scholar 

  • Wyrtki K, Kilonsky B (1984) Mean water and current structure during the Hawaii-to-Tahiti shuttle experiment. J Phys Oceanogr 14:242–254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terray, L., Thual, O., Belamari, S. et al. Climatology and interannual variability simulated by the ARPEGE-OPA coupled model. Climate Dynamics 11, 487–505 (1995). https://doi.org/10.1007/BF00207197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00207197

Keywords

Navigation