Skip to main content

Advertisement

Log in

Alpha-decay damage in minerals of the pyrochlore group

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

X-ray diffraction analysis and transmission electron microscopy have been used to study the effects of alpha-decay damage in pyrochlore group minerals, characterized by the general formula A 1−m B 2O6(O,OH,F)1−n ·pH2O. As defined by the XRD intensity ratio I/I 0 , both the saturation dose (for which I/I 0 =0.1−0.0) and the dose which signifies the initial loss of crystallinity (for which I/I 0 =1.0−0.8) increase as a function of geologic age. The increase is attributed to annealing of isolated alpha-recoil tracks back to the original crystalline structure. The tracks have calculated mean lives, τa, on the order of 108 years. In contrast, minerals which remain crystalline (e.g., uraninite, UO2) despite doses of up to 1018 alpha-events/mg have mean alpha-recoil track lives ≈104 years (Eyal and Fleischer 1985).

After correcting the calculated dose for annealing of alpha-recoil damage, I/I 0 is observed to decrease exponentially to zero over the dose range 0.02–1.0 × 1016 alpha-events/mg. The relationship between I/I 0 and “corrected” dose was used to calculate an average alpha-recoil track diameter of 4.6 nm, in which < 2600 atoms are displaced. XRD line broadening due to strain dominates the first half of the crystalline-to-metamict transition, reaching a maximum of 0.003, then decreasing to < 0.001. Line broadening due to decreasing crystallite size dominates the latter half of the transition. Estimated crystallite dimensions decrease from 450 nm to < 15 nm prior to reaching the fully metamict state.

With increasing dose HRTEM images of microlites from the Harding pegmatite sequentially exhibit: 1) mottled diffraction contrast, 2) isolated 1–5 nm aperiodic areas, 3) coexisting aperiodic and crystalline areas, 4) relict “islands” of crystalline material in an aperiodic matrix, and 5) complete loss of lattice fringe periodicity. With no consideration given to alpha-recoil track fading, the transition covers a dose range of 0.04–1.7 × 1017 alpha-events/mg. Using a value of τa=108 years, this dose range is corrected down to 0.02–1.2 × 1016 alpha-events/mg.

The metamict state is characterized by a range of M-M and M-O distances which give rise to bands of diffuse scattering centered at 0.30 nm and 0.18 nm, respectively, in x-ray and electron diffraction patterns. Random image contrast shown by HRTEM is consistent with a random network type structure, an interpretation supported by EXAFS/XANES studies (Greegor et al. 1985a, b, 1987). The structure of metamict pyrochlore consists of an aperiodic framework of corner-sharing B-O polyhedra. Compared to the crystalline precursor, the metamict state displays a reduced M-O coordination number and mean bond length, increased distortion of the B-site, and a slight increase in the average M-M distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich LT, Wetherill GW, Davis GL, Tilton GR (1958) Radioactive ages of micas from granitic rocks by Rb-Sr and K-Ar methods. Am Geophys Union Trans 39:1124–1134

    Google Scholar 

  • Barker WW, White PS, Knop O (1976) Pyrochlores. X. Madelung energies of pyrochlores and defect fluorites. Can J Chem 54:2316–2334

    Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76:382–403

    CAS  Google Scholar 

  • Broegger WC (1893) Amorf. Salmonsens Store Illustrerede Konversationslexikon 1:742–743

    Google Scholar 

  • Brookins DG, Fairbairn HW, Hurley PM, Pinson WH (1969) A Rb — Sr geochronologic study of the pegmatites of the Middletown area, Connecticut. Contr Mineral Petrol 22:157–168

    Google Scholar 

  • Brookins DG, Chakoumakos BC, Cook CW, Ewing RC, Landis GP, Register ME (1979) The Harding pegmatite: Summary of recent research. In: Ingersoll RV, Woodward LA (eds) New Mexico Geol Soc Guidebook 30, pp 127–133

  • Bursill LA, Thomas JM (1981) High-resolution electron microscopy of microcrystalline, partially crystalline, and amorphous silicates. J Phys Chem 85:3007–3010

    Google Scholar 

  • Bursill LA, Mallinson LG, Elliot SR, Thomas JM (1981) Computer simulation and interpretation of electron microscopic images of amorphous structures. J Phys Chem 85:3004–3006

    Google Scholar 

  • Busche FD, Prinz M, Keil K, Kurat G (1972) Lunar zirkelite: a uranium-bearing phase. Earth Planet Sci Lett 14:313–321

    Google Scholar 

  • Callender JF, Robertson JM, Brookins DG (1976) Summary of Precambrian geology and geochronology of northeastern New Mexico. In: Ewing RC, Kues BS (eds) New Mexico Geol Soc Guidebook 27, pp 129–135

  • Cameron EN, Larrabee DM, McNair AH, Page JJ, Shainin VE (1945) Structural and economic characteristics of New England mica deposits. Econ Geol 40:369–393

    Google Scholar 

  • Černý P (1982) Anatomy and classification of granitic pegmatites. In: Černý P (ed) Granitic Pegmatites in Science and Industry, Mineral Assoc Can Short Course Handbook 8, pp 1–40

  • Chakoumakos BC (1978) Microlite, the Harding Pegmatite, Taos County, New Mexico. BS Thesis, University of New Mexico, Albuquerque

    Google Scholar 

  • Chakoumakos BC (1984) Systematics of the pyrochlore structure type, ideal A2B2X6Y. J Sol State Chem 53:120–129

    Google Scholar 

  • Chakoumakos BC (1986) Pyrochlore. In: Parker SP (ed) McGraw-Hill Yearbook of Science and Technology 1987, McGraw-Hill, New York, pp 393–395

    Google Scholar 

  • Chakoumakos BC, Ewing RC (1985) Crystal chemical constraints on the formation of actinide pyrochlores. In: Jantzen CM, Stone JA, Ewing RC (eds) Scientific Basis for Nuclear Waste Management VIII, Materials Research Society, Pittsburgh, pp 641–646

    Google Scholar 

  • Clark GS (1982) Rubidium-strontium isotope systematics of complex granitic pegmatites. In: Černý P (ed) Granitic Pegmatites in Science and Industry, Mineral Assoc Can Short Course Handbook 8, pp 347–372

  • Clinard FW Jr (1986) Review of self-irradiation effects in Pu-substituted zirconolite. Ceram Bull 65:1181–1187

    Google Scholar 

  • Clinard FW Jr, Peterson DE, Rohr DL, Hobbs LW (1984a) Selfirradiation effects in 238Pu-substituted zirconolite. I. Temperature dependence of damage. J Nucl Mater 126:245–254

    Google Scholar 

  • Clinard FW Jr, Rohr DL, Roof RB (1984b) Structural damage in a self-irradiated zirconolite-based ceramic. Nucl Instr Meth Phys Res B1:581–586

    Google Scholar 

  • Clinard FW Jr, Tucker DS, Hurley GF, Kise CD, Rankin J (1985) Irradiation-induced reduction of microcracking in zirconolite. In: Jantzen CM, Stone JA, Ewing RC (eds) Scientific Basis for Nuclear Waste Management VIII, Materials Research Society, Pittsburgh, pp 663–670

    Google Scholar 

  • Condie KC (1979) Plate Tectonics and Crustal Evolution. Pergamon Press, New York

    Google Scholar 

  • Deliens M, Delhal J, Tarte P (1977) Metamictization and U-Pb systematics — a study by infrared absorption spectrometry of Precambrian zircons. Earth Planet Sci Lett 33:331–344

    Google Scholar 

  • Deuser WG, Hertzog LF (1962) Rubidium-strontium age determinations of muscovites and biotites from pegmatites of the Blue Ridge and Piedmont. J Geophys Res 67:1997–2004

    Google Scholar 

  • Ewing RC (1975) The crystal chemistry of complex niobium and tantalum oxides. IV. The metamict state: Discussion. Am Mineral 60:728–733

    Google Scholar 

  • Ewing RC, Haaker RF (1980) The metamict state: Implications for radiation damage in crystalline waste forms. Nucl Chem Waste Manage 1:51–57

    Google Scholar 

  • Ewing RC, Headley TJ (1983) Alpha-recoil damage in natural zirconolite (CaZrTi2O7). J Nucl Mater 119:102–109

    Google Scholar 

  • Ewing RC, Haaker RF, Headley TJ, Hlava PF (1982) Zirconolites from Sri Lanka, South Africa and Brazil. In: Topp SV (ed) Scientific Basis for Nuclear Waste Management V, Elsevier Science Publishing, New York, pp 249–256

    Google Scholar 

  • Ewing RC, Chakoumakos BC, Lumpkin GR, Murakami T (1987) The metamict state. Mater Res Soc Bull 12:58–66

    Google Scholar 

  • Exarhos GJ (1984) Induced swelling in radiation damaged ZrSiO4. Nucl Instr Meth Phys Res B1:538–541

    Google Scholar 

  • Eyal Y, Fleischer RL (1985) Preferential leaching and the age of radiation damage from alpha decay in minerals. Geochim Cosmochim Acta 49:1155–1164

    Google Scholar 

  • Eyal Y, Kaufman A (1982) Alpha-recoil damage in monazite: preferential dissolution of the radiogenic actinide isotopes. Nucl Tech 58:77–83

    Google Scholar 

  • Eyal Y, Lumpkin GR, Ewing RC (1985) Alpha-recoil effect on the dissolution of betafite: Rapid natural annealing of radiation damage within a metamict phase. In: Werme LO (ed) Scientific Basis for Nuclear Waste Management IX, Materials Research Society, Pittsburgh, pp 379–386

    Google Scholar 

  • Eyal Y, Lumpkin GR, Ewing RC (1987) Natural annealing of alpha-recoil damage in metamict minerals of the thorite group. In: Bates JK, Seefeldt WB (eds) Scientific Basis for Nuclear Waste Management X, Materials Research Society, Pittsburgh, pp 635–643

    Google Scholar 

  • Foltyn EM, Clinard FW Jr, Rankin J, Peterson DE (1985) Self irradiation effects in 238Pu-substituted zirconolite: II. Effect of damage microstructure on recovery. J Nucl Mater 136:97–103

    Google Scholar 

  • Fullagar PD (1971) Age and origin of plutonic intrusions in the Piedmont of the southeastern Appalachians. Geol Soc Am Bull 82:2845–2862

    Google Scholar 

  • Gatehouse BM, Grey IE, Hill RJ, Rossell HJ (1981) Zirconolite, CaZrχTi3−χO7; structure refinements for near-end-member compositions with χ= 0.85 and 1.30. Acta Crystallogr B37:306–312

    Google Scholar 

  • Glass JJ (1935) The pegmatite minerals from near Amelia, Virginia Am Mineral 20:741–768

    Google Scholar 

  • Graham J, Thornber MR (1974) The crystal chemistry of complex niobium and tantalum oxides. IV. The metamict state. Am Mineral 59:1047–1050

    Google Scholar 

  • Greegor RB, Lytle FW, Chakoumakos BC, Lumpkin GR, Ewing RC (1985a) An investigation of metamict and annealed pyrochlores by x-ray absorption spectroscopy. In: Jantzen CM, Stone JA, Ewing RC (eds) Scientific Basis for Nuclear Waste Management VIII, Materials Research Society, Pittsburgh, pp 655–662

    Google Scholar 

  • Greegor RB, Lytle FW, Chakoumakos BC, Lumpkin GR, Ewing RC (1985b) An investigation of uranium L-edges of metamict and annealed betafite. In: Werme LO (ed) Scientific Basis for Nuclear Waste Management IX, Materials Research Society, Pittsburgh, pp 387–392

    Google Scholar 

  • Greegor RB, Lytle FW, Chakoumakos BC, Lumpkin GR, Ewing RC, Spiro CL, Wong J (1987) An x-ray absorption spectroscopy investigation of the Ta site in alpha-recoil damaged natural pyrochlores. In: Bates JK, Seefeldt WB (eds) Scientific Basis for Nuclear Waste Management X, Materials Research Society, Pittsburgh, pp 645–658

    Google Scholar 

  • Greegor RB, Lytle FW, Ewing RC, Haaker RF (1984) Ti-site geometry in metamict, annealed and synthetic complex Ti-Nb- Ta oxides by x-ray absorption spectroscopy. Nucl Instr Meth Phys Res B1:587–594

    Google Scholar 

  • Grins J (1980) Studies on some pyrochlore type solid electrolytes. Chem Commun (Stockholm), No 8, pp 1–70

  • Hamburg A (1914) Die radioaktiven Substanzen und die geologische Forschung. Geol Foren Forh 36:31–96

    Google Scholar 

  • Harker AB, Flintoff JF (1984) Polyphase ceramic and glass-ceramic forms for immobilizing ICPP high level nuclear waste. In: McVay G (ed) Scientific Basis for Nuclear Waste Management VII, Elsevier Science Publishing, New York, pp 513–520

    Google Scholar 

  • Headley TJ, Ewing RC (1986) TEM study of the microstructure of metamict minerals. In: Romig AD Jr, Chambers WF (eds) Microbeam Analysis — 1986, San Francisco Press, San Francisco, pp 141–144

    Google Scholar 

  • Headley TJ, Ewing RC, Haaker RF (1981a) High resolution study of the metamict state in zircon. In: Bailey GW (ed) 39th Annual Proceedings of the Electron Microscopy Society of America, San Francisco Press, San Francisco, pp 112–113

    Google Scholar 

  • Headley TJ, Ewing RC, Haaker RF (1981b) Amorphous structure of metamict minerals observed by TEM. Nature 293:449–450

    Google Scholar 

  • Heinrich EWm (1980) The Geology of Carbonatites. RE Krieger Publishing Company, Huntington, New York

    Google Scholar 

  • Hirschi H (1931) Mikrolith in Spodumenpegmatit bei Embudo in New Mexico. Schweiz Mineral Petrogr Mitt:253–255

  • Hogarth DD (1961) A study of pyrochlore and betafite. Can Mineral 6:610–633

    Google Scholar 

  • Hogarth DD (1977) Classification and nomenclature of the pyrochlore group. Am Mineral 62:403–410

    Google Scholar 

  • Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon. Acta Crystallogr 8:291–300

    Google Scholar 

  • Hurley PM, Fairbairn HW (1953) Radiation damage in zircon: a possible age method. Geol Soc Am Bull 64:659–674

    Google Scholar 

  • Imafuku M, Nakai I, Akimoto J, Miyawaki R, Sugitani Y (1986) Characterization of the metamict state of oxide minerals by EXAFS. 14th Gen Meeting Inter Mineral Assoc, Abstracts with Program: 131–132

  • Jahns RH (1953) The genesis of pegmatites (II): Quantitative analysis of lithium-bearing pegmatite, Mora County, New Mexico. Am Mineral 38:1078–1112

    Google Scholar 

  • Jahns RH, Ewing RC (1976) The Harding mine, Taos County, New Mexico. In: Ewing RC, Kues BS (eds) New Mexico Geol Soc Guidebook 27, pp 263–276

  • Jahns RH, Ewing RC (1977) The Harding mine, Taos County, New Mexico. Mineral Rec 8:115–126

    Google Scholar 

  • Kariorsis FG, Gowda KA, Cartz L (1982) Damage cross-sections of heavy ions in crystal structures. J Nucl Mater 109:748–750

    Google Scholar 

  • Keller L, Wagner CNJ (1983) Diffraction analysis of metamict samarskite. Am Mineral 68:459–465

    Google Scholar 

  • Kesson SE, Ringwood AE (1984) Immobilization of high-level waste in SYNROC-E. In: McVay G (ed) Scientific Basis for Nuclear Waste Management VII, Elsevier Science Publishing, New York, pp 507–512

    Google Scholar 

  • Klug HP, Alexander LE (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. John Wiley & Sons, New York

    Google Scholar 

  • Krivokoneva GK, Sidorenko GA (1971) The essence of the metamict transformation in pyrochlores. Geochem Int 8:113–122

    Google Scholar 

  • Langford JI, Louer D, Sonneveld EJ, Visser JW (1986) Applications of total pattern fitting to a study of crystallite size and strain in zinc oxide powder. Powder Diffr 1:211–221

    Google Scholar 

  • Lemke RW, Jahns RH, Griffitts WR (1952) Mica deposits of the southeastern Piedmont. Part 2. Amelia district, Virginia. US Geol Surv Prof Paper 248-B:103–139

    Google Scholar 

  • Lipova LM, Kuznetsova GA, Makarov YeS (1965) An investigation of the metamict state in zircons and cyrtolites. Geochem Int 2:513–525

    Google Scholar 

  • Lumpkin GR, Ewing RC (1985) Natural pyrochlores: Analogues for actinide host phases in radioactive waste forms. In: Jantzen CM, Stone JA, Ewing RC (eds) Scientific Basis for Nuclear Waste Management VIII, Materials Research Society, Pittsburgh, pp 647–654

    Google Scholar 

  • Lumpkin GR, Ewing RC (1986) High-resolution transmission electron microscopy of microlite from the Harding pegmatite, Taos County, New Mexico. In: Romig AD Jr, Chambers WF (eds) Microbeam Analysis 1986, San Francisco Press, San Francisco, pp 145–147

    Google Scholar 

  • Lumpkin GR, Chakoumakos BC, Ewing RC (1986a) Mineralogy and radiation effects of microlite from the Harding pegmatite, Taos County, New Mexico. Am Mineral 71:569–588

    Google Scholar 

  • Lumpkin GR, Ewing RC, Chakoumakos BC, Greegor RB, Lytle FW, Foltyn EM, Clinard FW Jr, Boatner LA, Abraham MM (1986b) Alpha-recoil damage in zirconolite (CaZrTi2O7). J Mater Res 1:564–576

    Google Scholar 

  • Lumpkin GR, EwingRC, Eyal Y (1988) Preferential leaching and natural annealing of alpha-recoil tracks in metamict betafite and samarskite. J Mater Res, in press

  • Luzzi DE, Meshii M (1986) High-resolution electron microscopy of amorphization of Cu4Ti3. J Mater Res 1:617–628

    Google Scholar 

  • Matzke Hj (1982) Radiation damage in crystalline insulators, oxides and ceramic nuclear fuels. Radiat Eff 64:3–33

    Google Scholar 

  • Mazzi F, Munno R (1983) Calciobetafite (new mineral of the pyrochlore group) and related minerals from Campi Flegrei, Italy; crystal structures of polymignite and zirkelite: comparison with pyrochlore and zirconolite. Am Mineral 68:262–276

    Google Scholar 

  • Mitchell RS (1973a) Metamict minerals: a review. Part I. Mineral Rec 4:177–182

    Google Scholar 

  • Mitchell RS (1973b) Metamict minerals: a review. Part II. Mineral Rec 4:214–223

    Google Scholar 

  • Montgomery A (1950) Geochemistry of tantalum in the Harding pegmatite, Taos County, New Mexico. Am Mineral 35:853–866

    Google Scholar 

  • Morgan PED, Harker AB, Flintoff JF, Shaw TM, Clarke DR (1984a) Developments in SRP “composite” defense ceramic radwaste forms. In: Wicks GG, Ross WA (eds) Advances in Ceramics 8, American Ceramic Society, Columbus, pp 234–246

    Google Scholar 

  • Morgan PED, Shaw TM, Pugar EA (1984b) Ceramics for high waste loaded commercial radwaste disposal. In: Wicks GG, Ross WA (eds) Advances in Ceramics 8, American Ceramic Society, Columbus, pp 209–221

    Google Scholar 

  • Murakami T, Chakoumakos BC, Ewing RC (1986) High resolution electron microscopy of crystalline, partially metamict and metamict zircons. 14th Gen Meeting Inter Mineral Assoc, Abstracts with Program: 179

  • Nakai I, Akimoto J, Imafuku M, Miyawaki R, Sugitani Y, Koto K (1987) Characterization of the amorphous state in metamict silicates and niobates by EXAFS and XANES analyses. Phys Chem Minerals 15:113–124

    Google Scholar 

  • Oversby VM, Ringwood AE (1981) Lead isotopic studies of zirconolite and perovskite and their implications for long range SYNROC stability. Rad Waste Manage 1:289–308

    Google Scholar 

  • Pabst A (1952) The metamict state. Am Mineral 37:137–157

    Google Scholar 

  • Pyatenko YuA (1960) Some aspects of the chemical crystallography of the pyrochlor-group minerals. Sov Phys-Crystallogr 4:184–186

    Google Scholar 

  • Ringwood AE (1982) Immobilization of radioactive wastes in SYNROC. Am Sci 70:201–208

    Google Scholar 

  • Ringwood AE (1985) Disposal of high-level nuclear wastes: A geological perspective. Mineral Mag 49:159–176

    Google Scholar 

  • Rodgers J (1952) Absolute ages of radioactive minerals from the Appalachian region. Am J Sci 250:411–427

    Google Scholar 

  • Rotella FJ, Jorgensen JD, Biefeld RM, Morosin B (1982) Location of deuterium sites in the defect pyrochlore DTaWO6 from neutron powder diffraction data. Acta Crystallogr B38:1697–1703

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Google Scholar 

  • Sinclair W, Ringwood AE (1981) Alpha-recoil damage in natural zirconolite and perovskite. Geochem J 15:229–243

    Google Scholar 

  • Sinkankas J (1968) Classic mineral occurrences: I. Geology and mineralogy of the Rutherford pegmatites, Amelia, Virginia. Am Mineral 53:373–405

    Google Scholar 

  • Subramanian MA, Aravamudan G, Subba Rao GV (1983) Oxide pyrochlores — A review. Prog Solid State Chem 15:55–143

    Google Scholar 

  • Suchomel TJ (1976) Geology and Mineralogy of the Harding Pegmatite, Taos County, New Mexico. MS Thesis, University of Illinois, Urbana-Champaign

    Google Scholar 

  • Stugard F Jr (1958) Pegmatites of the Middletown area, Connecticut. US Geol Surv Bull 1042-Q:613–683

    Google Scholar 

  • Tornroos R (1985) Metamict zircon from Mozambique. Bull Geol Soc Finland 57:181–195

    Google Scholar 

  • Vance ER, Kariorsis FG, Cartz L, Wong MS (1984) Radiation effects on sphene and sphene-based glass ceramics. In: Wicks GG, Ross WA (eds) Advances in Ceramics 8, American Ceramic Society, Columbus, pp 62–67

    Google Scholar 

  • VanKonynenburg RA, Guinan MW (1983) Radiation effects in SYNROC-D. Nucl Technol 60:206–217

    Google Scholar 

  • Vegard L (1916) Results of crystal analysis. Philos Mag 6:65–96

    Google Scholar 

  • Wald JW, Offermann P (1982) A study of radiation effects in curium-doped Gd2Ti2O7 (pyrochlore) and CaZrTi2O7 (zirconolite). In: Lutze W (ed) Scientific Basis for Nuclear Waste Management V, Elsevier Science Publishing, New York, pp 369–378

    Google Scholar 

  • Weber WJ (1981) Ingrowth of lattice defects in alpha irradiated UO2 single crystals. J Nucl Mater 98:206–215

    Google Scholar 

  • Weber WJ, Matzke Hj (1986) Radiation effects in actinide host phases. Radiat Eff 98:93–99

    Google Scholar 

  • Weber WJ, Roberts FP (1983) A review of radiation effects in solid nuclear waste forms. Nucl Technol 60:178–198

    Google Scholar 

  • Weber WJ, Turcotte RP, Roberts FP (1982) Radiation damage from alpha decay in ceramic nuclear waste forms. Rad Waste Manage 2:295–319

    Google Scholar 

  • Weber WJ, Wald JW, Matzke Hj (1985) Self-radiation damage in actinide host phases of nuclear waste forms. In: Jantzen CM, Stone JA, Ewing RC (eds) Scientific Basis for Nuclear Waste Management VIII, Materials Research Society, Pittsburgh, pp 679–686

    Google Scholar 

  • Weber WJ, Wald JW, Matzke Hj (1986) Effects of self-radiation damage in Cm-doped Gd2Ti2O7 and CaZrTi2O7. J Nucl Mater 138:196–209

    Google Scholar 

  • White TJ (1984) The microstructure and microchemistry of synthetic zirconolite, zirkelite and related phases. Am Mineral 69:1156–1172

    Google Scholar 

  • White TJ, Segall RL, Hutchison JL, Barry JC (1984) Polytypic behaviour of zirconolite. Proc Roy Soc Lond A392:343–358

    Google Scholar 

  • Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31

    Google Scholar 

  • Wright JE, Sinha AK, Glover L (1975) Age of zircons from the Petersburg granite, Virginia; with comments on belts of plutons in the Piedmont. Am J Sci 275:848–856

    Google Scholar 

  • Yada K, Tanji T, Sunagawa I (1981) Application of lattice imagery to radiation damage investigation in natural zircon. Phys Chem Mineral 7:47–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumpkin, G.R., Ewing, R.C. Alpha-decay damage in minerals of the pyrochlore group. Phys Chem Minerals 16, 2–20 (1988). https://doi.org/10.1007/BF00201325

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201325

Keywords