Skip to main content
Log in

Vibrational spectra of olivine composition glasses: The Mg-Mn join

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The vibrational frequencies of a series of splatquenched, olivine glasses spanning the compositional range from Mg2SiO4 to Mn2SiO4 have been determined using both infrared and Raman spectroscopies. The spectra of all glasses show evidence of tetrahedral coordination of silicon (possibly with some slight distortions), and largely octahedral coordination of magnesium. Spectra of Mn-rich glasses indicate that there is some manganese in 4 or 5-fold coordination. The frequencies observed for the fundamental vibrations of the silica tetrahedra are similar to those previously observed for SiO4 groups in both crystalline and glassy orthosilicates. Additionally, there is evidence for a small amount of silicate polymerization in all glasses characterized: vibrations attributable to Si2O7 groups are visible in both infrared and Raman spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaogi M, Ross NL, McMillan P, Navrotsky A (1984) The Mg2SiO4 polymorphs (olivine, modified spinel and spinel)-thermodynamic properties from oxide melt solution calorimetry, phase gnrelations and models of lattice vibrations. Am Mineral 69:499–512

    Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76:382–403

    Google Scholar 

  • Bingham K, Parke S (1965) Absorption and fluorescence spectra of divalent manganese in glasses. Phys Chem Glasses 6:224–232

    Google Scholar 

  • Burns RG (1970) Mineralogical applications of crystal-field theory. Cambridge University Press, Cambridge, p 12

    Google Scholar 

  • Calas G, Petiau J (1983) Short-range order around Fe(II) and Mn(II) in oxide glasses determined by x-ray absorption spectroscopy in relation with other spectroscopic and magnetic properties. In: The structure of non-crystalline materials 1982, Gaskell PH, Parker JM and Davis EA (eds) Taylor and Francis, Inc., New York, pp. 18–28

    Google Scholar 

  • Dyar MD (1984) Experimental methods for quenching structures in lunar-analog silicate melts: variations as a function of quench media and composition. J Geophys Res (Suppl) 89:C233-C239

    Google Scholar 

  • Dyar MD, Birnie DP III (1984) Quench media effects on iron partitioning and ordering in a lunar glass. J Non-Cryst Solids 67:397–412

    Google Scholar 

  • Faber AJ, van Die A, Blasse G, van der Weg WF (1987) Luminescence of manganese of different valencies in oxide glasses. Phys Chem Glasses 28:150–155

    Google Scholar 

  • Farmer, VC (1974) Infrared spectra of minerals. Mineralogical Society, London

    Google Scholar 

  • Gaskell, DR (1977) Activities and free energies of mixing in binary silicate melts. Metall Trans 8B:131–145

    Google Scholar 

  • Iishi K (1978) Lattice dynamics of forsterite. Am Mineral 63:1198–1208

    Google Scholar 

  • Jeanloz R, Ahrens TJ, Lally JS, Nord GL Jr, Christie JM, Heuer AH (1977) Shock-produced olivine glass: First observation. Science 197:457–459

    Google Scholar 

  • Kliava J (1982) Superposition model analysis of the short-range ordering for Mn2+ in oxide glasses. J Phys C Sol State Phys 15:7017–7029

    Google Scholar 

  • Kusabiraki K, Shiraishi Y (1981) The infrared spectrum of vitreous fayalite. J Non-Cryst Solids 44:365–368

    Google Scholar 

  • Lazarev AN (1972) Vibrational spectra and structure of silicates. Consultants Bureau, New York

    Google Scholar 

  • Linwood SH, Weyl WA (1942) Fluorescence of manganese in glasses and crystals. J Opt Soc Am 32:443–453

    Google Scholar 

  • Masson CR (1968) Ionic equilibria in liquid silicates. J Am Ceram Soc 51:134–143

    Google Scholar 

  • Masson CR, Smith IB, Whiteway SG (1970) Activities and ionic distributions in liquid silicates: application of polymer theory. Can J Chem 48:1456–1464

    Google Scholar 

  • Masson CR (1972) Thermodynamics and constitution of silicate slags. J Iron Steel Eng 210:89–96

    Google Scholar 

  • Matsui Y, Kawamura K, Syono Y (1982) Molecular dynamics calculations applied to silicate systems: Molten and vitreous MgSiO3 and Mg2SiO4 under low and high pressures. In: High pressure research in geophysics. Akimoto S and Manghnani MH (eds) Center for Academic Publications, Tokyo, Japan, pp 511–524

    Google Scholar 

  • McMillan P (1984a) Structural studies of silicate glasses and melts — applications and limitations of Raman spectroscopy. Am Mineral 69:622–644

    Google Scholar 

  • McMillan P (1984b) A Raman spectroscopic study of glasses in the system CaO-MgO-SiO2. Am Mineral 69:645–659

    Google Scholar 

  • McMillan PF, Coutures JP, Piriou B (1981) Diffusion Raman d'un verre de monticellite. Comptes Rendus de l'Acad. des Sciences a Paris, Serie II, 292:195–198

    Google Scholar 

  • Mysen BO, Virgo D, Scarfe CM (1980) Relations between the anionic structure and viscosity of silicate melts — a Raman spectroscopic study. Am Mineral 65:867–884

    Google Scholar 

  • Nelson C, Furukawa T, White WB (1983) Transition metal ions in glasses: Network modifiers or quasi-molecular complexes? Mater Res Bull 18:959–966

    Google Scholar 

  • Nelson C, White WB (1980) Transition metal ions in silicate meltsI. Manganese in sodium silicate melts. Geochim Cosmochim Acta 44:887–893

    Google Scholar 

  • O'Neill, H St C (1986) Mo-MoO2 (MOM) oxygen buffer and the free energy of formation of MoO2. Am Mineral 71:1007–1010

    Google Scholar 

  • Piriou B, McMillan P (1983) The high-frequency vibrational spectra of vitreous and crystalline orthosilicates. Am Mineral 68:426–443

    Google Scholar 

  • Sarjeant P, Roy R (1969) Experimental data on formation of new non-crystalline solid (NCS) phases. In: Reactivity of solids Mitchell JW, DeVries RC, Roberts RW, Cannon P (eds) Wiley-Interscience, New York, pp 725–733

    Google Scholar 

  • Stebbins JF (1987) Identification of multiple structural species in silicate glasses by Si29 NMR. Nature 330:465–467

    Google Scholar 

  • Tarte P (1965a) Étude experimentale et interpretation du spectre infra-rouge des silicates et des germanates. Application a des problemes structuraux relatifs a l'état solide. Mem Acad R Belg 35 (4a, b)

  • Tarte P (1965b) The determination of cation coordination in glasses by infrared spectroscopy. In: Physics of non-crystalline solids, pp 549–565, Prins JA (ed), Wiley-Interscience, New York

    Google Scholar 

  • Tatsumisago M, Takahashi M, Minami T, Umesaki N, Iwamoto N (1987) Raman spectra of rapidly quenched Li4SiO4-Li3BO3 glasses. Phys Chem Glasses 28:95–96

    Google Scholar 

  • Turner WH, Turner JE (1970) Absorption spectra and concentration-dependent luminescence of Mn2+ in silicate glasses. J Am Ceram Soc 53:329–335

    Google Scholar 

  • Waseda Y, Toguri JM (1977) The structure of molten binary silicate systems CaO-SiO2 and MgO-SiO2. Metall Trans 8B:563–568

    Google Scholar 

  • Yin CD, Okuno M, Morikawa H, Marumo F (1983) Structure analysis of MgSiO3 glass. J Non-Cryst Solids 55:131–141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, Q., McMillan, P. & Cooney, T.F. Vibrational spectra of olivine composition glasses: The Mg-Mn join. Phys Chem Minerals 16, 352–359 (1989). https://doi.org/10.1007/BF00199555

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199555

Keywords

Navigation