Skip to main content
Log in

Reconsidering the functions of latex

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Enormous quantities of latex are found in over 40 plant families on a worldwide basis. Despite the proportions involved, the role of this substance within plants is still a matter of conjecture. Latex is closely associated with isoprene which may be emitted as a gas from both plants (that may or may not contain latex) and animals. The volume of isoprene expelled into the atmosphere each year is approximately equal to that of total methane emissions. The latter (but not the former), a known “greenhouse gas”, is the subject of considerable concern. It appears reasonable, therefore, that efforts be made to examine more thoroughly the formation and function of latex and associated compounds in order to obtain a better understanding of a number of critical biological and environmental phenomena known to be associated with these phytochemicals. Possible roles played by these substances in both plants and their surrounding environment are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen PH (1956) The rainforests of Golfo Dulce. University of Florida Press, Gainesville, p 144

    Google Scholar 

  • Anonymous (1986) From trees to telephones: a review of the 1985 annual report of the Rubber Research Institute of Malaysia. Rubber Dev 39: 110

  • Backer CA, Bakhuizen Van Der Brink RC Jr (1965) Flora of Java, vol 2. N. V. P. Noordoff, Groningen, p 124

    Google Scholar 

  • Bailey LH, Bailey EZ (1976) Hortus Third. Macmillan, New York, p 14

    Google Scholar 

  • Blakeslee S (1990) New York Times. 20 November, p B9

  • Bonner J, Galston AW (1947) The physiology and biochemistry of rubber formation in plants. Bot Rev XIII: 543–596

    Google Scholar 

  • Brower LP, Brower JVZ, Corvino JN (1967) Plant poisons in a terrestrial food chain. Proc Natl Acad Sci USA 57: 892–898

    Google Scholar 

  • Cailleux A, Cogny M, Allain P (1992) Blood isoprene concentrations in humans and in some animal species. Biochem Med 47: 157–160

    Google Scholar 

  • Chameides WL, Lindsay RW, Richardson J, Kiang CS (1988) The role of biogenic hydrocarbon in urban photochemical smog: Atlanta as a case study. Science 241: 1473–1474

    Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu YL, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim KJ, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang QY, Plunkett GM, Soltis PS, Swensen S, Williams SE, Gadek PA, Quinn CJ, Eguiaret LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rebL1. Ann M Bot Gard 80: 526–580

    Google Scholar 

  • Cook AA (1981) Diseases of tropical and subtropical field, fiber, and oil plants. Macmillan, New York, pp 253–273

    Google Scholar 

  • Dewar RC (1992) Inverse modelling and the global carbon-cycle. Trends Ecol Evol 7: 105–107

    Google Scholar 

  • Dussourd DE (1990) The vein drain: or, how insects outsmart plants. Nat Hist 99: 44–49

    Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in co-evolution. Evolution 18: 586–608

    Google Scholar 

  • Esau K (1965) Plant anatomy, 2nd Edn. Wiley, New York

    Google Scholar 

  • Fahn A (1982) Plant anatomy, 4th edn. Oxford, p 142

  • Farrell BD, Dussourd DE, Mitter C (1991) Escalation of plant defense: do latex and resin canals spur plant diversification? Am Nat 138: 881–900

    Google Scholar 

  • Fisher HL (1956) Rubber. Sci Am 195: 74–98

    Google Scholar 

  • Fraenkel G (1959) The raison d'être of secondary plant substances. Science 129: 1466–1470

    Google Scholar 

  • Giessman TA, Crout DGH (1969) Organic chemistry of secondary plant metabolites. Freeman Cooper, San Francisco, p 234

    Google Scholar 

  • Giordani R, Siepaio M, Moulintraffori J, Regli P (1991) Antifungal action of Carica-Papaya latex: isolation of fungal cell-wall hydrolyzing enzymes. Mycoses 34: 469–477

    Google Scholar 

  • Greek BF (1991) Rubber demand is expected to grow after 1991. C & E News 69: 37–54

    Google Scholar 

  • Grubb MJ, Victor DG, Hope CW (1991) Pragmatics in the greenhouse. Nature 354: 348–350

    Google Scholar 

  • Harriss RC (1987) Influence of a tropical forest on air chemistry. In: Dickenson RE (ed) The geophysiology of Amazonian vegetation and climate interactions. Wiley, New York, pp 163–173

    Google Scholar 

  • Hewitt CN, Monson RK, Falk R (1990) Isoprene emissions from the grass Arundo donax L. are not linked to phototranspiration. Plant Sci 66: 139–144

    Google Scholar 

  • Hogan KB, Hoffman JS, Thompson AM (1991) Methane in the greenhouse agenda. Nature 354: 181–182

    Google Scholar 

  • Kargiolaki H, Osborne OJ, Thompson FB (1991) Leaf abscission and stem leasions (influmescences) on popular clones after sulfur dioxide and ozone fumigation: a link with ethylene release? J Exp Bot 42: 1189–1198

    Google Scholar 

  • Klein RC, Party E, Gershey EL (1989) Safety in the laboratory. Nature 341: 288

    Google Scholar 

  • LaFont A (1909) Sur la présence d'un parasite de la classe des Flagellés dans le latex de Euphorbia pilulifera. Compt R Searces Soc Biol Paris 66: 1011–1013

    Google Scholar 

  • Lefohn AS (1992) Ozone standards and their relevance for protecting vegetation. In: Lefohn AS (ed) Surface level ozone exposures and their effects on vegetation. Lewis, Chelsea, Minnesota, pp 325–359

    Google Scholar 

  • Lewinsohn TM (1991) The geographical distribution of plant latex. Chemoecology 2: 64–68

    Google Scholar 

  • Loreto F, Sharkey TD (1990) Isoprene emissions and photosynthesis in Quercus. Planta 182: 523–531

    Google Scholar 

  • Lovelock JE (1987) Gaia: a new look at life on earth. Oxford University Press, Oxford

    Google Scholar 

  • Lucretius (1st Century BC) De Rerum Natura VI: 637

  • Mahlberg PG (1993) Laticifers: an historic perspective. Bot Rev 59: 1–23

    Google Scholar 

  • Maksymowych R, Ledbetter MC (1987) Fine-structure of epithelial canal cells in petioles of Xanthium pensylvanicum. Am J Bot 74: 65–73

    Google Scholar 

  • Margulis L, Lovelock JE (1974) Biological modification of the Earth's atmosphere. Icarus 21: 471

    Google Scholar 

  • McGaughey WH, Whalon ME (1992) Managing insect resistance to Bacillus thuringiensis toxins. Science 258: 1451–1455

    CAS  Google Scholar 

  • Metcalfe CR (1967) Distribution of latex in the plant kingdom. Econ Bot 21: 115–127

    Google Scholar 

  • Monson RK, Fall R (1989) Isoprene emission from aspen leaves. The influence of environment and relation to photosynthesis and photorespiration. Plant Physiol 90: 267–274

    Google Scholar 

  • Mooney HA, Vitousek PM, Matson PA (1987) Exchange of materials between terrestrial ecosystems and the atmosphere. Science 238: 926–932

    Google Scholar 

  • New Encyclopaedia Britannica (1986) University of Chicago, Chicago

  • Nissan SJ, Foley ME (1986) No latex starch utilization in Euphorbia esula. Plant Physiol 81: 696–698

    Google Scholar 

  • Osmond CB, Winter K, Ziegler H (1992) Functional significance of different pathways of CO2 fixation in photosynthesis. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology. II. Water relations and carbon assimilation. Encyclopedia of plant physiology, vol 12B. Springer, Berlin Heidelberg New York, p 485

    Google Scholar 

  • Paulson SE, Flagan RC, Seinfeld JH (1992) Atmospheric photooxidation of isoprene. II. The ozone-isoprene reaction. Int J Chem Kinet 24: 103–125

    Google Scholar 

  • Polhamus LG (1962) Rubber: botany, production, and utilization. Interscience, New York, p 191

    Google Scholar 

  • Post WM, Peng TH, Emanuel WR, King AW, Dale VH, DeAngelis DL (1990) The global carbon cycle. Am Sci 78: 310–326

    Google Scholar 

  • Purseglove JW (1968) Tropical crops: dicotyledons. Wiley, New York, p 163

    Google Scholar 

  • Rasmussen RA, Khalil MAK (1988) Isoprene over the Amazon basin. J Geophys Res 93: 1417–1421

    CAS  Google Scholar 

  • Rhoades DH (1979) Evolution of plant chemical defense against herbivores. Academic Press, New York

    Google Scholar 

  • Rosenthal GA, Janzen DH (1979) Herbivores: their interaction with secondary plant metabolites. Academic Press, New York

    Google Scholar 

  • Runeckles VC, Chevone BI (1992) Crop responses to ozone. In: Lefohn AS (ed) Surface level ozone exposures and their effects on vegetation. Lewis, Chelsea, Minnesota, pp 189–270

    Google Scholar 

  • Sanders GE, Volls JJ, Clark AG (1992) Physiological changes in Phaseolus vulgaris in response to long-term ozone exposure. Ann Bot (London) 69: 123–133

    Google Scholar 

  • Schneider SH (1989) The greenhouse effect: science and policy. Science 243: 771–780

    Google Scholar 

  • Sen DN, Chawan DD (1972) Leafless Euphorbia on Rajasthan (India) rocks. Vegetatio 24: 193–214

    Google Scholar 

  • Sharkey TD, Holland EA, Mooney HA (1991) Trace gas emissions by plants. Academic Press, New York

    Google Scholar 

  • Stahl E (1888) Pflanzen und Schnecken. Eine biologische Studie über die Schutzmittel der Pflanzen gegen Schneckenfraß. Jena Z Naturwiss 22: 557–681

    Google Scholar 

  • Sundquist ET (1993) The global carbon dioxide balance. Science 259: 934–941

    CAS  Google Scholar 

  • Trainer M, Williams EJ, Parrish DD, Buhr MP, Allwine EJ, Westberg HH, Fesenfeld FC, Liu SC (1987) Models and observations of the impact of natural hydrocarbons on rural ozone. Nature 329: 705–707

    Google Scholar 

  • Webster CC, Baulkwill WJ (1989) Rubber. Longman, New York, p 84

    Google Scholar 

  • Went F (1955) Air pollution. Sci Am 192: 62–72

    Google Scholar 

  • Went F (1960) Blue haze in the atmosphere. Nature 187: 641

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, J.R. Reconsidering the functions of latex. Trees 9, 1–5 (1994). https://doi.org/10.1007/BF00197862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00197862

Key words

Navigation