Skip to main content
Log in

Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala Meig.

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The blowfly Calliphora has a mobile head and various, presumably proprioceptive, sense organs in the neck region. The “prosternal organs” are a pair of mechanosensory hair fields, each comprising ca. 110 sensilla. We studied their structure (Figs. 2–4), kinematics (Figs. 5, 6) and, after surgery, their influence on head posture (Figs. 7–11) in order to reveal their specific function.

The hair sensilla are structurally polarized, all in roughly the same direction, and are stimulated by dorsoventral bending of the hairs (Figs. 3, 4). This occurs indirectly by flap-movements of two contact sclerites (Figs. 3, 6); they move in the same direction during pitch turns of the head, in opposite directions during roll turns, and barely at all during yaw turns of the head (Fig. 5).

Bending and arresting all hairs of one field elicits a head roll bias to the non-operated side (Fig. 7) during tethered flight in visually featureless surroundings. In contrast, shaving all hairs of one field elicits a head roll to the operated side (Figs. 8–10). The surgically induced bias of head posture is not compensated within three days (Fig. 10). Our results show that the prosternal organs of Calliphora sense pitch and roll turns of the fly's head, and control at least its roll position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HP° TP°:

angular positions of the sagittal planes of the fly's head and thorax, respectively, relative to an external reference

HR° = HP — TP:

head roll angle of the fly's head relative to its thorax, HR>0° for clockwise head roll, looking in flight direction

N:

number of flies

n:

number of measurements

PO:

prosternal organ

SD:

standard deviation

SEM:

standard error of the mean

References

  • Bechterew W ( 1883) Ergebnisse der Durchschneidung des N. acusticus nebst Erörterung der Bedeutung der semicirculären Kanäle für das Körpergleichgewicht. Pflüger's Arch Physiol 30:312–347

    Google Scholar 

  • Bilo D (1991) Integration opto- und mechanosensorischer Afferenzen bei der Flugsteuerung der Haustaube (Columba livia var domestica). Zool Jb Physiol 95:323–330

    Google Scholar 

  • Buddenbrook W von (1928) Grundriss der Vergleichenden Physiologie. Bornträger, Berlin

    Google Scholar 

  • Budelmann BU (1979) Hair cell polarization in the gravity receptor system of the statocysts of the cephalopods Sepia officinalis and Loligo vulgaris. Brain Res 160:261–270

    Google Scholar 

  • Fraenkel G (1932) Untersuchungen über die Koordination von Reflexen und automatisch-nervösen Rhythmen bei Insekten. 1. Die Flugreflexe der Insekten und ihre Koordination. Z Vergl Physiol 16:371–393

    Google Scholar 

  • Fuldner D (1955) Morphologie und Histologie der Halshaut und ihrer Bildung bei einheimischen Odonaten. Wiss Z E M Arndt Univ Greifswald, Math-Naturwiss Reihe 4:609–623

    Google Scholar 

  • Geiger G, Poggio T (1977) On head and body movements of flying flies. Biol Cybern 25:177–180

    Google Scholar 

  • Gnatzy W, Tautz J ( 1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus of the cercal filiform hairs of Gryllus. Cell Tissue Res 213:441–463

    Google Scholar 

  • Goodman LJ (1959) Hair plates on the first cervical sclerites of the Orthoptera. Nature (Lond) 183:1106–1107

    Google Scholar 

  • Groebbels F (1929) Der Vogel als automatisch sich steuerndes Flugzeug. Naturwissenschaften 17:890–893

    Google Scholar 

  • Haskell PT (1959) Function of certain prothoracic hair receptors in the desert locust. Nature (Lond) 183:1007–1007

    Google Scholar 

  • Hengstenberg R (1988) Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig. J Comp Physiol A 163:151–165

    Google Scholar 

  • Hengstenberg R (1991) Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process. Neurosciences 3:19–29

    Google Scholar 

  • Hengstenberg R (1992) Multisensory control in insect oculomotor systems. In: Wallman J, Miles FA (eds) Visual motion and its role in the stabilization of gaze. Revs Oculom Res 5: in press

  • Hengstenberg R, Sandeman DC, Hengstenberg B (1986) Compensatory head roll in the blowfly Calliphora during flight. Proc R Soc Lond B 227:455–482

    Google Scholar 

  • Hensler K, Robert D (1990) Compensatory head rolling during corrective flight steering in locusts. J Comp Physiol A 166:685–693

    Google Scholar 

  • Hoffmann Ch (1963) Vergleichende Physiologie der mechanischen Sinne. Fortschr Zool 16:268–332

    Google Scholar 

  • Hoffmann Ch (1964) Bau und Vorkommen von proprioceptiven Sinnesorganen bei den Arthropoden. Ergebn Biol 27:1–38

    Google Scholar 

  • Horn E, Lang HG (1978) Positional head reflexes and the role of the prosternal organ in the walking fly, Calliphora erythrocephala. J Comp Physiol 126:137–146

    Google Scholar 

  • Kien J (1979) Variability of locust motoneuron responses to sensory stimulation: a possible substrate for motor flexibility. J Comp Physiol A 134:55–68

    Google Scholar 

  • Land MF (1973) Head movements of flies during visually guided flight. Nature 243:199–300

    Google Scholar 

  • Land MF (1975) Head movements and fly vision. In: Horridge GA (ed) The Compound Eye and Vision of Arthropods. Clarendon Press, Oxford, pp 469–489

    Google Scholar 

  • Laverack MS (1979) External proprioceptors In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, Chap. 1, pp. 1–63

    Google Scholar 

  • Liske E (1977) The influence of head position on the flight behaviour of the fly Calliphora erythrocephala. J Insect Physiol 23:375–379

    Google Scholar 

  • Liske E (1978) Der Einfluß gerichteter Kopfbewegungen auf das Flugsteuerungssystem der Schmeißfliege Calliphora erythrocephala — Steuerung des Fluges durch die Augen und durch mechanorezeptorische Sinnesorgane. PhD thesis, Univ Darmstadt

  • Lowne BT (1893–95) The blow-fly. R.H. Porter, London, Vol. II, pp. 633–634

  • Meyer DL, Bullock TH (1977) The hypothesis of sense-organ dependent tonus mechanisms: history of a concept. Ann N Y Acad Sci 290:3–17

    Google Scholar 

  • Miall RC (1990) Visual control of steering in locust flight: the effects of head movement on responses to roll stimuli. J Comp Physiol A 166:735–744

    Google Scholar 

  • Milde JJ, Seyan HS, Strausfeld NJ ( 1987) The neck motor system of the fly Calliphora erythrocephala. II. Sensory organization. J Comp Physiol A 160:225–238

    Google Scholar 

  • Mittelstaedt H (1950) Physiologie des Gleichgewichtssinnes bei fliegenden Libellen. Z Vergl Physiol 32:422–463

    Google Scholar 

  • Peters W (1962) Die propriorezeptiven Organe am Prosternum und an den Labellen von Calliphora erythrocephala Mg. Z Morph Ökol Tiere 51:211–226

    Google Scholar 

  • Preuss T (1990) Bau und Wirkungsweise des Prosternalorgans und sein Einfluß auf die Kopfstellung bei der Schmeißfliege Calliphora erythrocephala. Diplomarbeit, Fakultät für Biologie, Universität Tübingen

  • Pringle J (1938) Proprioreception in insects. The function of the hair sensilla at the joints. J Exp Biol 15:467–473

    Google Scholar 

  • Richter S ( 1964) Die Feinstruktur des für die Mechanorezeption wichtigen Bereichs der Stellungshaare auf dem Prosternum von Calliphora erythrocephala Mg. (Diptera). Z Morph Ökol Tiere 54:202–218

    Google Scholar 

  • Sandeman DC (1976) Spatial equilibrium in arthropods. In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, Chap. 12, pp. 485–527

    Google Scholar 

  • Strausfeld NJ, Seyan HS (1985) Convergence of visual, haltere, and prosternal inputs at neck motor neurons of Calliphora erythrocephala. Cell Tissue Res 240:601–615

    Google Scholar 

  • Strausfeld NJ, Seyan HS, Milde JJ (1987) The neck motor system of the fly Calliphora erythrocephala. I. Muscles and motor neurons. J Comp Physiol A 160:205–224

    Google Scholar 

  • Theiss J (1979) Mechanoreceptive bristles on the head of the blowfly: mechanics and electrophysiology of the macrochaetae. J Comp Physiol 132:55–68

    Google Scholar 

  • Thurm U (1963) Die Beziehung zwischen mechanischen Reizgrößen und stationären Erregungszuständen bei Borstenfeldsensillen von Bienen. Z Vergl Physiol 46:351–382

    Google Scholar 

  • Thurm U (1965a) An insect mechanoreceptor I. Fine structure and adequate stimulus. Cold Spring Harb Symp Quant Biol 30:75–82

    Google Scholar 

  • Thurm U (1965b) An insect mechanoreceptor II. Receptor potentials. Cold Spring Harb Symp Quant Biol 30:83–94

    Google Scholar 

  • Vater G (1961) Vergleichende Untersuchungen über die Morphologie des Nervensystems der Dipteren. Z Wiss Zool 167:137–196

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preuss, T., Hengstenberg, R. Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala Meig.. J Comp Physiol A 171, 483–493 (1992). https://doi.org/10.1007/BF00194581

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00194581

Key words

Navigation