Skip to main content
Log in

A new type of periodie boundary condition useful for high-temperature atomistic simulations of grain boundaries: Applications in semiconductors

  • Published:
Interface Science

Abstract

A new type of boundary condition, named Möbius or antiperiodic boundary conditions, is proposed and tested, both analytically and within the context of numerical simulations. It is shown that these boundary conditions are very useful for twist grain boundary atomistic simulations. By contrast to the use of the ordinary Born von Kármán periodic boundary conditions, they allow only one grain boundary per box instead of two. The risk of migration and overinteraction of two grain boundaries at high temperature is thus avoided while more complex grain boundaries can also be tackled at the same computer price. Such examples are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Putaux and J. Thibault-Desseaux, J. Physique 51, C1-323 (1990).

    Google Scholar 

  2. A.Bourret and J.L.Rouvière, in Polycristalline Semiconductors, Springer Proceedings in Physics, vol. 35, edited by J.H.Werner, H.J.Möller and H.P.Strunk (Springer Verlag, Berlin, 1989), p. 8.

    Google Scholar 

  3. J.L.Rouvière and A.Bourret, in Polycristalline Semiconductors, Springer Proceedings in Physics, vol. 35, edited by J.H.Werner, H.J.Möller and H.P.Strunk (Springer Verlag, Berlin, 1989), p. 19.

    Google Scholar 

  4. de Saint-Venant, A.J.C. Barré, in Mémoire sur la torsion des prismes., Mém. des Savants étrangers (Paris 1855).

  5. A.H.Cottrell, in The Mechanical Properties of Matter (John Wiley and Sons, New York, 1964), p. 93.

    Google Scholar 

  6. J.F.Lutsko, D.Wolf, S.Yip, S.R.Phillpot, and T.Nguyen, Physical Review B 38 11572 (1988).

    Google Scholar 

  7. W.Ledermann, Proc. Roy. Soc. Ser. A 182, 362 (1944).

    Google Scholar 

  8. S.Nosé, Mol. Phys. 52, 255 (1984).

    Google Scholar 

  9. S.Nosé, J. Chem. Phys. 81, 511 (1984).

    Google Scholar 

  10. S.Kirkpatrick, C.D.Gelatt, and M.P.Vecchi, Science 220, 671 (1983).

    MathSciNet  Google Scholar 

  11. J.R.BeelerJr. and G.L.Kulcinski, in Interatomic Potentials and Simulations of Lattice Defects, edited by P.C.Gehlen, J.R.BeelerJr., and R.I.Jaffe (Plenum Press, New York, 1972), p. 735.

    Google Scholar 

  12. G.H.Bishop, G.A.Bruggeman, Ralph J.Harrison, J.A.Cox, and S.Yip, in Nuclear Metallurgy Vol. 20, edited by R.J.Arsenault, J.R.BeelerJr., and J.A.Simmons (National Bureau of Standards, Gaitherburg, MD, 1976), p. 522.

    Google Scholar 

  13. P.N.Keating, Phys. Rev. 145, 637 (1966).

    Google Scholar 

  14. G.A.Baraff, E.O.Kane, and M.Schlüter, Phys. Rev. B 21, 5662 (1980).

    Google Scholar 

  15. F.H.Stillinger and T.A.Weber, Phys. Rev. B 31, 5262 (1985).

    Google Scholar 

  16. J.Tersoff, Phys. Rev. Lett. 56, 632 (1986).

    Google Scholar 

  17. J.Tersoff, Phys. Rev. B 37, 6991 (1988).

    Google Scholar 

  18. J.Tersoff, Phys. Rev. B 38, 9902 (1988).

    Google Scholar 

  19. J.Q.Broughton and X.Q.Li, Phys. Rev. B 35, 9120 (1987).

    Google Scholar 

  20. M.Schulz and R.Blachnik, in Landolt-Börstein III/17a, edited by O.Madelung (Springer Verlag, Heidelberg, 1982), p. 61.

    Google Scholar 

  21. P.J.E.Aldred and M.Hart, Proc. Roy. Soc. Lond. A 332, 239 (1973).

    CAS  PubMed  Google Scholar 

  22. J.S.Reid and J.Pirie, Acta Cryst. A 36, 957 (1980).

    Google Scholar 

  23. K. Soma and H. Matsuo, Phys. Stat. Sol. (b) 111, K93 (1982).

  24. J.B.Theeten and L.Dobrzynski, Phys. Rev. B 5, 1529 (1972).

    Google Scholar 

  25. F.A.Lindemann, Phys. Zeits. 11, 609 (1910).

    Google Scholar 

  26. J.J.Gilvarry, Phys. Rev. 102, 308 (1956).

    Google Scholar 

  27. M.K.Kluge, J.R.Ray, and A.Rahman, Phys. Rev. B 36, 4234 (1987).

    Google Scholar 

  28. S.R.Phillpot, J.F.Lutsko, D.Wolf, and S.Yip, Phys. Rev. B 40, 2831 (1989).

    Google Scholar 

  29. M.Born, J. Chem. Phys. 7, 591 (1939).

    Google Scholar 

  30. C.Z.Wang, C.T.Chan, and K.M.Ho, Phys. Rev. B 42, 11276 (1990).

    Google Scholar 

  31. A.M.Papon, M.Petit, and J.J.Bacmann, Phill. Mag. A 40, 573 (1984).

    Google Scholar 

  32. A.Bourret and J.J.Bacmann, Revue Phys. Appl. 22, 563 (1987).

    Google Scholar 

  33. A.Georges, A.Jacques, X.Baillin, J.Thibault-Desseaux, and J.L.Putaux, Inst. Phys. Conf. Ser. 104, 349 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardouin Duparc, O.B.M., Torrent, M. A new type of periodie boundary condition useful for high-temperature atomistic simulations of grain boundaries: Applications in semiconductors. Interface Sci 2, 7–16 (1994). https://doi.org/10.1007/BF00188815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00188815

Keywords