Skip to main content
Log in

Turnover rate of metallothionein and cadmium in Mytilus edulis

  • Research Papers
  • Published:
Biometals Aims and scope Submit manuscript

Abstract

The results demonstrate the first attempt to determine metallothionein turnover in the whole soft tissues of mussels Mytilus edulis exposed to cadmium. Half-lives for metallothionein and cadmium are 25 and 300 days, respectively. As metallothionein degrades the released cadmium induces further synthesis of the protein, to which the metal becomes resequestered. The slow metallothionein turnover rates (compared with mammals) and the lack of significant cadmium excretion testify to the relatively stable nature of the cadmium-metallothionein complex in these invertebrates and supports the view of a detoxifying role for metallothionein in the mussels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen RD, Winter WP, Maher JJ, Bernstein IA, 1978 Turnover of metallothionein in rat liver. Biochem J 174, 327–338.

    Google Scholar 

  • Bayne BL, Addison RF, Capuzzo JM, et al. 1988 An overview of the GEEP Workshop. Marine Ecology Progr Series 46, 235–243.

    Google Scholar 

  • Bebianno MJ, 1990. Metallothionein induction and metal binding in Littorina littorea and Mytilus edulis on exposure to cadmium. PhD Thesis, University of Reading.

  • Bebianno MJ, Langston WJ. 1989 Quantification of metallothioneins in marine invertebrates using differential pulse polarography. Portugaliae Electrochim Acta 7, 59–64.

    Google Scholar 

  • Bebianno MJ, Langston WJ. 1991 Metallothionein induction in Mytilus edulis exposed to cadmium. Marine Biol 108, 91–96.

    Google Scholar 

  • Bebianno MJ, Langston WJ. 1992 Metallothionein induction and cadmium binding in Mytilus galloprovincialis. Comp Biochem Physiol 103C, 79–85.

    Google Scholar 

  • Bremner I, Hoekstra WG, Davies NT, Young BW. 1978 Effect of zinc status of rats on the synthesis and degradation of copper-induced metallothioneins. Biochem J 174, 883–892.

    Google Scholar 

  • Cain K, Griffiths BL. 1984 A comparison of isometallothionein synthesis in rat liver after partial hepatectomy and parenteral zinc injection. Biochem J 217, 85–92.

    Google Scholar 

  • Carpene E, Cattani O, Hakim G, Serrazanetti GP. 1983 Metallothionein from the foot and posterior adductor muscle of Mytilus galloprovincialis. Comp Biochem Physiol 74C, 331–336.

    Google Scholar 

  • Chen RW, Whanger PD, Weswig PH. 1975 Biological function of metallothionein. I. Synthesis and degradation of rat liver metallothionein. Biochem Med 12, 95–105.

    Google Scholar 

  • Engel DW, Roesijadi G 1987 Metallothioneins: a monitoring tool. In: Vernberg W, Calabrese A, Thurberg FP, Vernberg FJ, eds. Pollution Physiology of Estuarine Organisms. Columbia, SC: University of South Carolina Press; 421–438.

    Google Scholar 

  • Feldman SL, Cousins RJ. 1976 Degradation of hepatic zinc-thionein after parental zinc administration. Biochem J 160, 583–588.

    Google Scholar 

  • Feldman SL, Squibb KS, Cousins RJ. 1978 Degradation of cadmium-thionein in rat liver and kidney. J Toxicol Environ Health 4, 805–813.

    Google Scholar 

  • Frankenne F, Noel-Lambot F, Disteche A. 1980 Isolation and characterization of metallothioneins from cadmiumloaded mussel Mytilus edulis. Comp Biochem Physiol 66C, 179–182.

    Google Scholar 

  • Frazier JM, George SG, Overnell J, Coombs TL, Kagi J. 1985 Characterization of two molecular weight classes of cadmium binding proteins from the mussel, Mytilus edulis (L.). Comp Biochem Physiol 80C, 257–262.

    Google Scholar 

  • George SG. 1982 Subcellular accumulation and detoxification of metals in aquatic animals. In: Vernberg WB, Calabrese A, Thurberg FP, Vernberg FJ, eds. Physiological Mechanisms of Marine Pollutant Toxicity. New York: Academic Press; 3–52.

    Google Scholar 

  • George SG, Pirie BJS. 1979 The occurrence of cadmium in sub-cellular particles in the kidney of the marine mussel Mytilus edulis, exposed to cadmium. The use of electron microbrobe analysis. Biochim Biophys Acta 580, 234–244.

    Google Scholar 

  • George SG, Viarengo A. 1985 A model for heavy metal homeostatis and detoxification in mussels. In: Vernberg FJ, Thurberg FP, Calabrese A, Vernberg WB, eds. Marine Pollution and Physiology: Recent Advances, Columbia, SC; University of South Carolina Press; 125–143.

    Google Scholar 

  • Goldberg ED, Bowen VT, Farrington JW et al. 1978. The mussel watch. Environ Conservation 5, 101–126.

    Google Scholar 

  • Held DD, Hoekstra WG 1984. The effects of zinc deficiency on turnover of cadmium-metallothionein in rat liver. J Nutr 114, 2274–2282.

    Google Scholar 

  • Köhler K, Riisgard HU 1982. Formation of metallothioneins in relation to accumulation of cadmium in the common mussel Mytilus edulis. Marine Biol 66, 53–58.

    Google Scholar 

  • Langston WJ, Zhou M. 1987a Cadmium accumulation, distribution and elimination in the bivalve Macoma balthica: neither metallothionein nor metallothioneinlike proteins are involved. Marine Environ Res 21, 225–237.

    Google Scholar 

  • Langston WJ, Zhou M. 1987b Cadmium accumulation, distribution and metabolism in the gastropod Littorina littorea: the role of metal-binding proteins. J Marine Biol Ass UK 67, 585–601.

    Google Scholar 

  • McCarter JA, Roch M. 1984. Chronic exposure of coho salmon to sublethal concentrations—III. Kinetics of metabolism of metallothionein. Comp Biochem Physiol 77C, 83–87.

    Google Scholar 

  • Noel-Lambot F. 1976 Distribution of cadmium, zinc and copper in the mussel Mytilus edulis. Existence of cadmium-binding proteins similar to metallothioneins. Experientia 32, 324–325.

    Google Scholar 

  • Nolan CV, Duke EJ. 1983a Cadmium accumulation and toxicity in Mytilus edulis: involvement of metallothioneins and heavy molecular weight proteins. Aquatic Toxicol 4, 153–163.

    Google Scholar 

  • Nolan CV, Duke EJ. 1983b Cadmium-binding proteins in Mytilus edulis: relation to mode of administration and significance in tissue retention of cadmium. Chemosphere 12, 65–74.

    Google Scholar 

  • Olafson RW. 1981 Differential pulse polarographic determination of murine metallothionein induction kinetics. J Biol Chem 256, 1263–1268.

    Google Scholar 

  • Olafson RW, Kearns A, Sim RG. 1979 Heavy metal induction of metallothionein synthesis in the hepatopancreas of the crab Scylla serrata. Comp Biochem Physiol 62B,417–424.

    Google Scholar 

  • Overnell J, McIntosh R, Fletcher TC. 1987 The enhanced induction of metallothionein by zinc, its half-life in the marine fish Pleuronectes platessa, and the influence of stress factors on metallothionein levels. Experientia 43, 178–181.

    Google Scholar 

  • Pavicic J, Skreblin M, Raspor B, et al. 1987 Metal pollution assessment of the marine environment by determination of metal-binding proteins in Mytilus sp. Marine Chem 22, 235–248.

    Google Scholar 

  • Roesijadi G, Calabrese A, Nelson DA 1982. Mercury-binding proteins of Mytilus edulis. In: Vernberg WB, Calabrese A, Thurberg FP, Vernberg FJ, eds. Physiological Mechanisms of Marine Pollutant Toxicity. New York: Academic Press; 75–87.

    Google Scholar 

  • Roesijadi G, Klerks PL. 1989 Kinetic analysis of cadmium binding to metallothionein and other intracellular ligands in oyster gills. J Exp Zool 25, 1–12.

    Google Scholar 

  • Scholz N. 1980 Accumulation, loss and molecular distribution of cadmium in Mytilus edulis. Helgolander Meeresunters 33, 68–78.

    Google Scholar 

  • Shaikh ZA, Smith JC. 1976 The biosynthesis of metallothionein in rat liver and kidney after administration of cadmium. Chem-Biol Interact 15, 327–336.

    Google Scholar 

  • Viarengo A. 1989 Heavy metals in marine invertebrates: mechanisms of regulation and toxicity at the cellular level. Aquatic Sci 1, 295–317.

    Google Scholar 

  • Viarengo A, Pertica M, Mancinelli G, Zanicchi G, Orunesu M. 1980 Rapid induction of copper-binding proteins in the gills of metal exposed mussels. Comp Biochem Physiol 67C, 215–218.

    Google Scholar 

  • Viarengo A, Moore MN, Mancinelli G, Mazzucotelli A, Pipe RK. 1985a Significance of metallothioneins and lysosomes in cadmium toxicity. Marine Environ Res 17, 184–187.

    Google Scholar 

  • Viarengo A, Palmero S, Zanicchi G, Capelli R, Vaissiere R, Orunesu M. 1985b Role of metallothioneins in Cu and Cd accumulation and elimination in the gill and digestive gland cells of Mytilus galloprovincialis Lam. Marine Environ Res 16, 23–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bebianno, M.J., Langston, W.J. Turnover rate of metallothionein and cadmium in Mytilus edulis . Biometals 6, 239–244 (1993). https://doi.org/10.1007/BF00187762

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187762

Keywords

Navigation