Skip to main content
Log in

Kinetic studies of acetate fermentation by Methanosarcina sp. MSTA-1

  • Environmental Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

The effect of three parameters (initial acetate concentration, temperature and pH) on the acetoclastic reaction was studied with the thermophilic methanogenic bacterium Methanosarcina sp. MSTA-1. The optimum temperature for growth ranged around 55° C, and optimum pH was 6.5–7.5, giving a minimum generation time of 12.6–13.9 h (µmax = 0.050–0.055 h−1) and a maximum value of the specific acetate consumption rate (q suppsinfs ) of 14–20 mmol/g cells per hour. Contrary to the methane yield, the growth yield was found to be dependent on culture conditions, especially on incubation temperature. Methanosarcina sp. MSTA-1 showed a low affinity for acetate substrate. Growth at 55° C and at constant pH 7 resulted in a K m value and a threshold acetate concentration of 10.7 mM and 0.7 mM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balch WE, Fox GE, Magrum LJ, Wolfe KS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    CAS  PubMed  Google Scholar 

  • Brandis A, Thauer RK, Stetter KO (1981) Relatedness of strains H and Marburg of Methanobacterium thermoautotrophicum. Zentralb Bakteriol Hyg I Abt Orig C2:311–317

    Google Scholar 

  • Fardeau ML, Belaich JP (1986) Energetics of the growth of Methanococcus thermolithotrophicus. Arch Microbiol 144:381–385

    Google Scholar 

  • Hubert H, Thomm M, König H (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50

    Google Scholar 

  • Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch Microbiol 132:1–9

    Google Scholar 

  • Jarell KF, Kalmokoff ML (1988) Nutritional requirements of the methanogenic archaebacteria. Can J Microbiol 34:557–576

    Google Scholar 

  • Krzycki JA, Wolkin RH, Zeikus JG (1982) Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri. J Bacteriol 149:247–254

    Google Scholar 

  • Laroche M (1983) Métabolisme intermédiaire des acides gras volatils en fermentation methanique. Thesis Docteur-Ingénieur INSA, Toulouse

  • Mah RA, Ward DM, Baresi L, Glass TL (1977) Biogenesis of methane. Ann Rev Microbiol 31:309–341

    Google Scholar 

  • Mazumder TK, Nishio N, Fukuzaki S, Nagai S (1986) Effect of sulfur-containing compounds on growth of Methanosarcina barkeri in defined medium. Appl Environ Microbiol 52:617–622

    Google Scholar 

  • Min H, Zinder SH (1989) Kinetics of acetate utilization by two thermophilic acetotrophic methanogens: Methanosarcina sp. strain CALS-1 and Methanothrix sp. strain CALS-1. Appl Environ Microbiol 55:488–491

    Google Scholar 

  • Moletta R, Albagnac G (1982) A gas meter forlow rate of gas flow: application to the methane fermentation. Biotechnol Lett 4:319–322

    Google Scholar 

  • Moletta R, Goma G, Durand G (1978) Influence de la température sur la cinétique de croissance et le coefficient de maintenance de Candida lipolytica cultivée sur n-alcane. Arch Microbiol 118:293–299

    Google Scholar 

  • Mountfort DO, Asher RA (1979) Effect of inorganic sulfide on the growth and metabolism of Methanosarcina barkeri strain DM. Appl Environ Microbiol 37:670–675

    Google Scholar 

  • Ollivier B, Lombardo A, Garcia JL (1984) Isolation and characterization of a new thermophilic Methanosarcina strain MP. Ann Inst Pasteur Microbiol 135:187–198

    Google Scholar 

  • Patel GB (1984) Characterization and nutritional properties of Methanothrix concilii sp. nov., a mesophilic, aceticlastic methanogen. Can J Microbiol 30:1383–1396

    Google Scholar 

  • Scherer P, Sahm H (1981) Influence of sulfur-containing compounds on the growth of Methanosarcina barkeri in a defined medium. Eur J Appl Microbiol Biotechnol 12:28–35

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s, µmax, Y s) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Google Scholar 

  • Schönheit P, Kristiansson JK, Thauer RK (1982) Kinetic metabolism for the ability of sulfate reducers to out-compete methanogens for acetate. Arch Microbiol 132:285–288

    Google Scholar 

  • Smith PH, Hungate RE (1958) Isolation and characterization of Methanobacterium ruminantium n. sp. J Bacteriol 75:713–718

    CAS  PubMed  Google Scholar 

  • Touzel JP, Albagnac G (1984) Acetoclastic methanogens in anaerobic digesters. In: Antonopoulos AA (ed) Proceedings of the 1st symposium on biotechnological advances in processing municipal wastes for fuel and chemicals, Mineapolis 15–17 August 1984, pp 35–39

  • Touzel JP, Petroff D, Albagnac G (1985) Isolation and characterization of a new thermophilic Methanosarcina, the strain CHTI-55. Syst Appl Microbiol 6:66–71

    Google Scholar 

  • Vogels GD, Keltjens JT, Drift C van der (1988) Biochemistry of methane production. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Series in ecological and applied microbiology. Wiley, New York, pp 707–770

    Google Scholar 

  • Wandrey C, Aivasidis A (1983) Continuous anaerobic digestion with Methanosarcina barkeri. Ann NY Acad Sci 413:489–500

    Google Scholar 

  • Westermann P, Ahring BK, Mah RA (1989a) Threshold acetate concentration for acetate catabolism by aceticlastic methanogenic bacteria. Appl Environ Microbiol 55:514–515

    Google Scholar 

  • Westermann P, Ahring BK, Mah RA (1989b) Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl Environ Microbiol 55:1262–1266

    Google Scholar 

  • Winfrey MR (1984) Microbial production of methane. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 153–219

    Google Scholar 

  • Woese CR, Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11:245–252

    Google Scholar 

  • Yang ST, Okos MR (1987) Kinetic study and mathematical modeling of methanogenesis of acetate using pure culture of methanogens. Biotechnol Bioeng 30:661–667

    Google Scholar 

  • Zehnder AJB, Ingvorsen K, Marti T (1982) Microbiology of methane bacteria. In: Hughes DE, Stafford DA, Wheatley BI, Baader W, Lettinga G, Nyns EJ, Verstraete W, Wentworth RL (eds) Anaerobic digestion 1981. Elsevier Biomedical Press, New York, pp 45–68

    Google Scholar 

  • Zinder SH, Mah RA (1979) Isolation and characterization of a thermophilic strain unable to use H2-CO2 for methanogenesis. Appl Environ Microbiol 38:996–1008

    Google Scholar 

  • Zinder SH, Anguish T, Cardwell SC (1984) Effects of temperature on methanogenesis in a thermophilic (58° C) anaerobic digestor. Appl Environ Microbiol 47:808–813

    Google Scholar 

  • Zinder SK, Sowers KR, Ferry JG (1985) Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int J Syst Bacteriol 35:522–523

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: R. Moletta

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarens, M., Molleta, R. Kinetic studies of acetate fermentation by Methanosarcina sp. MSTA-1. Appl Microbiol Biotechnol 33, 239–244 (1990). https://doi.org/10.1007/BF00176532

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00176532

Keywords

Navigation