Skip to main content
Log in

A stochastic model for predator-prey systems: basic properties, stability and computer simulation

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A simple stochastic description of a model of a predator-prey system is given. The evolution of the system is described by means of Itô's stochastic differential equations (SDEs), which are the natural stochastic generalization of the Lotka-Volterra deterministic differential equations. Since these SDEs do not satisfy the usual conditions for the existence and uniqueness of the solution, we state a theorem of existence; moreover we study the stability of the equilibrium point and perform a computer simulation to study the behaviour of the trajectories of solutions with given initial data and to estimate first and second moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abundo, M., Rossi C.: Numerical simulation of a stochastic model for cancerous cells submitted to chemotherapy. J. Math. Biol. 27, 81–90 (1989)

    Google Scholar 

  2. Andersen, P. K., Borgan, Ø.: Counting process models for life history data. Scand. J. Statist. 12, 97–158 (1985)

    Google Scholar 

  3. Arnold, L.: Stochastic differential equations: theory and applications. New York: Wiley 1974

    Google Scholar 

  4. Arnold, L., Lefever, R. (eds.) Stochastic non linear systems in physics, chemistry and biology. (Springer Series in Synergetics) Berlin Heidelberg New York: Springer 1981

    Google Scholar 

  5. Barra, M., Del Grosso, G., Gerardi, A., Koch, G., Marchetti, F.: Some basic properties of stochastic population models. (Lect. Notes Biomath., vol. 32, pp. 155–164) Berlin Heidelberg New York: Springer 1978

    Google Scholar 

  6. Billard, L. On Lotka-Volterra predator-prey models. J. Appl. Probab. 14, 375–381 (1977)

    Google Scholar 

  7. Billingsley, P.: The Lindeberg-Levy theorem for martingales. Proc. Am. Math. Soc. 12, 788, 792 (1961)

    Google Scholar 

  8. Billingsley, P.: Convergence of probability measures. New York: Wiley 1968

    Google Scholar 

  9. Capocelli, R. M., Ricciardi, L. M.: A diffusion model for population growth in random environment. Theor. Popul. Biol. 5, 28–45 (1974)

    Google Scholar 

  10. Crow, J. F., Kimura, M.: An introduction to population genetics theory. New York: Harper and Row 1970

    Google Scholar 

  11. Feldman, M. W., Roughgarden, J.: A population's stationary distribution and chance of extinction with remarks on the theory of species packing. Theor. Popul. Biol. 7, 197–207 (1975)

    Google Scholar 

  12. Ferrante, L., Koch, G.: An application of Liapunov techniques to stochastic population models. Report Dipartimento di Matematica University di Roma, ‘La Sapienza’

  13. Gihman, I. I., Skorohod, A. V.: Stochastic differential equations. Berlin Heidelberg New York: Springer 1972

    Google Scholar 

  14. Goel, N. S., Maitra, S. C., Montroll, E. W.: On the Volterra and other nonlinear models of interacting populations. Rev. Modern Phys. 43, 241–276 (1971)

    Google Scholar 

  15. Hinkley, S. W., Tsokos, C. P.: A stochastic model for chemical equilibrium. Math. Biol. 21, 241–276 (1971)

    Google Scholar 

  16. Khas'minskiy, R. Z.: Stability of systems of differential equations in the presence of random disturbances (in Russian). Moscow: Nauka Press 1969

    Google Scholar 

  17. Koch, G.: Stochastic models in biology I, II. Systems Anal. Modelling Simulation 1, 27–33; 151–168 (1984)

    Google Scholar 

  18. Kushner, H. J. Stability and existence of diffusions with discontinuous or rapidly growing drift terms. J. Differ 11, 156–168 (1972)

    Google Scholar 

  19. Lewontin, R. C., Cohen D.: On population growth in randomly varying environment. Proc. Nat. Acad. Sci. 62, 1056–1060 (1969)

    Google Scholar 

  20. Ludwig, D.: Persistence of dynamical systems under random perturbations. SIAM Rev. 15, 605–640 (1975)

    Google Scholar 

  21. Nobile, A. G., Ricciardi, L. M.: Growth and extinction in random environment. (Second International Conference on Information Science and Systems, Univ. Patras, Patras, 1979), vol. III, pp. 455–465. Dordrecht: Reidel 1980

    Google Scholar 

  22. May, R. M.: Stability and complexity in model ecosystems. Princeton University Press 1973

  23. Rescigno, A., Richardson, I. W.: The deterministic theory of population dynamics. In: Rosen R. (ed.) Foundation of mathematical biology, vol. 3. New York: Academic Press 1981

    Google Scholar 

  24. Ricciardi, L. M.: Diffusion process and related topics in biology. (Lect. Notes Biomath., vol. 14) Berlin Heidelberg New York: Springer 1977

    Google Scholar 

  25. Ricciardi, L. M.: Stochastic equations in neurobiology and population biology. (Lect. Notes Biomath., vol. 39, 248–263) Springer Verlag (1980)

  26. Rumelin, W.: Numerical treatment of stochastic differential equations. SIAM J. Numer. Anal. 19, 604–613 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abundo, M. A stochastic model for predator-prey systems: basic properties, stability and computer simulation. J. Math. Biol. 29, 495–511 (1991). https://doi.org/10.1007/BF00164048

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00164048

Keywords

Navigation