Skip to main content
Log in

In vitro predegradation at elevated temperatures of poly(lactide)

  • Papers
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study in vitro predegradation at elevated temperatures, used to obtain an increased degradation rate, was investigated. The in vitro degradation was followed by mass loss, molecular weight loss and changes in thermal properties. Two biodegradable polymers, the homopolymer PLLA and a copolymer PLA96 (96% L4%D lactide), were hydrolytically degraded at 90°C in a phosphate buffered solution. Both polymers, PLLA and PLA96, showed an initial linear degradation rate, but with longer implantation periods the degradation rate decreased and total degradation was best described as an asymptotic. Mass loss of the copolymer PLA96 was twice that of PLLA. The chemical analysis of the in vitro predegraded polymers coincided for both the decrease in molecular weight and the thermal properties with physiologically degraded poly(lactide). The results of this study show that although the degradation temperature is well above the glass transition temperature and not comparable to physiological temperatures, there seems to be good correlation between the in vitro degraded material and physiologically degraded material. In vitro predegradation enables investigation of the entire degradation process of a polymer in a short-term study. Moreover, in vitro predegradation allows direct comparison of the degradation rate of various polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. M. BOS, F. R. ROZEMA, G. BOERING, A. J. NIJENHUIS, A. J. PENNINGS and A. B. VERWEY, J. Oral Maxillofac. Surg. 45 (1987) 751.

    Google Scholar 

  2. O. BOSTMAN, E. A. MAKELA, P. TOMALA and P. ROKKANEN, J. Bone Jt. Surg. [Br] 17-B (1987) 706.

    Google Scholar 

  3. O. BOSTMAN, J. Bone Joint Surg. 73A (1991) 148.

    Google Scholar 

  4. H. MIETINNEN, E. A. MAKELA, P. ROKKANEN and P. TORMALA, J. Biomater. Sci. Polym. Ed. 4 (1992) 135.

    Google Scholar 

  5. E. K. PARTIO, J. MERIKANTO, J. T. HEIKILLA, P. YLINEN, E. A. MAKELA, J. VAINO, P. TORMALA and P. ROKKANEN, J. Pediatr. Orthop. 12 (1992) 646.

    Google Scholar 

  6. H. PIHLAJAMAKI, O. BOSTMAN, E. HIRVENSALO, P. TORMALA and P. ROKKANEN, J. Bone Joint Surg. [Br] 74 (1992) 853.

    Google Scholar 

  7. A. M. DONIGAN, B. R. PLAGA and P. M. CASKEY, J. Pediatr. Orthop. 13 (1993) 349.

    Google Scholar 

  8. P. CHRISTEL, M. VERT, F. CHABOT, H. GARREAU and M. AUDION, in “Composites in biomedical engineering”, Plastic and Rubber institute Proceedings (1985) 11/1-11/10R.

  9. R. SUURONEN, P. L. LAINE, T. POHJONEN and C. LINDQVIST, J. Oral Maxillofac. Surg. 52 (1994) 715.

    Google Scholar 

  10. J. E. BERGSMA, W. C.DE BRUIJN, F. R. ROZEMA, R. R. M. BOS and G. BOERING, Biomaterials 16 (1995) 25.

    Google Scholar 

  11. J. E. BERGSMA, F. R. ROZEMA, R. R. M. BOS and W. C.DE BRUIJN, J. Oral Maxillofac. Surg. 51 (1993) 666.

    Google Scholar 

  12. F. R. ROZEMA, W. C. de BRUIJN, R. R. M. BOS, G. BOERING, A. J. NIJENHUIS and A. J. PENNINGS, “Biomaterial-tissue interfaces”, edited by P. J. Doherty, R. L. Williams, D. F. Williams, A. T. L. Lee, Advances in Biomaterials (Elsevier 10, 1992) p. 349.

  13. R. SUURONEN, P. LAINE, E. SARKIALA, T. POHJONEN and C. LINDQVIST, Int. J. Oral Maxillifac. Surg. 21 (1992) 303.

    Google Scholar 

  14. O. BOSTMAN, U. PAIVARINTA, M. MANNINEN and P. ROKKANEN, Acta. Orthop. Scand. 6 (1992) 555.

    Google Scholar 

  15. F. R. ROZEMA, J. E. BERGSMA, R. R. M. BOS, G. BOERING, A. J. NIJENHUIS, A. J. PENNINGS and W. C.DE BRUIJN, J. Mater. Sci. Mater. Med. 5 (1994) 575.

    Google Scholar 

  16. J. E. BERGSMA, F. R. ROZEMA, R. R. M. BOS, D. W. GRIJPMA, G. BOERING and W. C.DE BRUIJN, Biomaterials 16 (1995) 267.

    Google Scholar 

  17. B. BUCHHOLZ, in “Degradation phenomena on polymeric biomaterials” (Springer-Verlag, Berlin, Heidelberg, 1992) p. 67.

    Google Scholar 

  18. J. W. LEENSLAG and A. J. PENNINGS, Macromol. Chem. 45 (1987) 751.

    Google Scholar 

  19. R. R. M. BOS, F. R. ROZEMA, G. BOERING, A. J. NIJENHUIS, A. J. PENNINGS, A. B. VERWEY, P. NIEUWENHUIS and H. W. B. JANSEN, Biomaterials 12 (1991) 32.

    Google Scholar 

  20. H. PISTNER, D. R. BENDIX, J. MUHLING and J. F. REUTHER, Biomaterials 14 (1993) 291.

    Google Scholar 

  21. X. ZHANG, U. P. WYSS, D. PICHORA and M. F. A. GOOSEN, J. Bioact. Compat. Polym. 9 (1994) 80.

    Google Scholar 

  22. S. LI, H. GARREAU and M. VERT, J. Mater. Sci. Mater. Med. 1 (1990) 198.

    Google Scholar 

  23. S. LI, H. GARREAU and M. VERT, J. Mater. Sci. Mater. Med. 1 (1990) 123.

    Google Scholar 

  24. E. W. FISCHER, H. J. STERTZEL and G. WEGNER, Kolloid-Z. u. Z. Polymere 251 (1973) 980.

    Google Scholar 

  25. F. W. CORDEWENER, F. R. ROZEMA, R. R. M. BOS and G. BOERING, J. Mater. Sci. Mater. Med. 6 (1995) 211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergsma, J.E., Rozema, F.R., Bos, R.R.M. et al. In vitro predegradation at elevated temperatures of poly(lactide). J Mater Sci: Mater Med 6, 642–646 (1995). https://doi.org/10.1007/BF00123445

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123445

Keywords

Navigation