Skip to main content
Log in

Low-order spectral models of the atmospheric circulation: A survey

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

A quasi-geostrophic potential vorticity equation is derived from the Navier-Stokes equations for atmospheric motions. It describes the evolution of a quasi-horizontally flow on time scales of a few days and more. The associated boundary-value problem is analyzed by projection of the equation onto orthonormal eigenfunctions (modes) of a Sturm-Liouville operator. The result is a spectral model, consisting of an infinite number of nonlinear ordinary differential equations for the evolution of the mode amplitudes. Low-order spectral models, in which only a few modes are resolved, appear to have properties which agree with observations of the atmospheric circulation. However, little justification is available for truncating the spectral expansion at low resolution numbers. It is argued that stochastic forcing terms should be added to the equations, but it is not a priori clear how they should be specified.

A derivation is presented of a specific low-order spectral model of the quasi-geostrophic potential vorticity equation. Some of its subsystems are analyzed for their physical and mathematical properties. It appears that topography can act as a triggering mechanism to generate multiple equilibria. The corresponding flow patterns resemble preference states of the atmospheric circulation. The systems can vacillate between three characteristic regimes with transitions provided either by external or internal mechanisms. A discussion is presented on the validity of stochastically forced spectral models and deterministic chaotic models for the atmospheric circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baer, F.: Analytical solutions to low-order spectral systems, Arch. Meteor. Geoph. Biokl. A 19 (1970). 255–282.

    Google Scholar 

  • Baer, F.: Energetics of low-order spectral systems, Tellus 23 (1971), 218–231.

    Google Scholar 

  • Barnett, T. P. and Roads, J. O.: Stochastic forcing and prediction of low-frequency planetary scale flow, J. Atmos. Sci. 43 (1986), 940–947.

    Google Scholar 

  • Baur, F., Hess, P., and Nagel, H.: Kalender der Grosswetterlagen Europas 1881–1939, Bad Homburg v.d. H., 1944.

  • Benzi, R., Malguzzi, P., Speranza, A., and Sutera, A.: The statistical properties of the general atmospheric circulation: observational evidence on a minimal theory of bimodality, Quart. J. R. Meterol. Soc. 112 (1986), 661–674.

    Google Scholar 

  • Blackman, M., Madden, R. A., Wallace, J. M., and Gutzler, D. S.: Geographical variations in the vertical structure of geopotential height fluctuations, J. Atmos. Sci. 36 (1979), 2450–2466.

    Google Scholar 

  • Bruns, T.: Contribution of linear and nonlinear processes to the long term variability of large scale atmospheric flow, J. Atmos. Sci. 42 (1985), 2506–2522.

    Google Scholar 

  • Bryan, K.: A numerical investigation of certain features of the general circulation, Tellus 11 (1959), 163–174.

    Google Scholar 

  • Charney, J. G. and DeVore, J. G.: Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci. 36 (1979), 1205–1216.

    Google Scholar 

  • Charney, J. G. and Straus, D. M.: Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems, J. Atmos. Sci. 37 (1980), 1157–1176.

    Google Scholar 

  • Charney, J. G., Shukla, J., and Mo, K. C.: Comparison of a barotropic blocking theory with observation, J. Atmos. Sci. 38 (1981), 762–779.

    Google Scholar 

  • Constantin, P., Foias, C., Manley, O. P., and Temam, R.: Determining modes and fractal dimensions of turbulent flows, J. Fluid Mech. 150 (1985), 427–440.

    Google Scholar 

  • Davey, M. K.: A quasi-linear theory for rotating flow over topography. Part I: steady β-plane channel, J. Fluid Mech. 99 (1980), 267–292.

    Google Scholar 

  • De Swart, H. E.: Analysis of a six component barotropic spectral model: chaotic motion, predictability and vacillation, CWI report AM-R8710 (1987a).

  • De Swart, H. E.: A study on the relation between predictability and interaction between different scales of motion with a ‘minimum order’ atmospheric spectral model, CWI report (1987b) to appear.

  • De Swart, H. E. and Grasman, J.: Sources of stochastic behaviour of dynamical systems, in Proc. Workshop The Dynamics of Long Waves in the Atmosphere, Kristineberg, Sweden, 1984, pp. 147–152.

    Google Scholar 

  • De Swart, H. E. and Grasman, J.: Effect of stochastic perturbations on a low-order spectral model of the atmospheric circulation, Tellus 39A, (1987), 10–24.

    Google Scholar 

  • Doedel, E. J.: AUTO 86 User Manual, Software for Continuation and Bifurcation Problems in Ordinary Differential Equations, Concordia University, Montreal, 1986.

    Google Scholar 

  • Dole, R. M. and Gordon, N. D.: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: geographical distribution and regional persistence characteristics, Mon. Wea. Rev. 11 (1983), 1567–1586.

    Google Scholar 

  • uutton, J.: The nonlinear quasi-geostrophic equation: existence and uniqueness of solutions on a bounded domain, J. Atmos. Sci. 31 (1974), 422–433.

    Google Scholar 

  • Dutton, J.: The noliinear quasi-geostrophic equation. Part II: predictability, recurrence and limit properties of thermally forced and unforced flows, J. Atmos. Sci. 33 (1976a), 1431–1453.

    Google Scholar 

  • Dutton, J.: Aperiodic trajectories and stationary points in a three-component spectral model of atmospheric flow, J. Atmos. Sci. 33 (1976b), 1499–1504.

    Google Scholar 

  • Egger, J.: Stochastically driven large-scale circulations with multiple equilibria, J. Atmos. Sci. 38 (1981), 2608–2618.

    Google Scholar 

  • Egger, J. and Schilling, H. D.: On the theory of the long-term variability of the atmosphere, J. Atmos. Sci. 40 (1983), 1073–1085.

    Google Scholar 

  • Fjøttoft, R.: On the changes in the spectral distribution of kinetic energy for two-dimensional, nondivergent flow, Tellus 5 (1953), 225–230.

    Google Scholar 

  • Franceshini, V., Tebaldi, C., and Zironi, F.: Fixed point limit behaviour of N-mode truncated Navier-Stokes equations as N increases, J. Stat. Phys. 35 (1983), 387–397.

    Google Scholar 

  • Frederiksen, J. S.: A unified three-dimensional instability theory of the onset of blocking and cyclogenesis II: teleconnection patterns, J. Atmos. Sci. 40 (1983), 2593–2609.

    Google Scholar 

  • Galin, M. B.: Energetics of a twelve-component model of the general atmospheric circulation, Atmos. Ocean Phys. 15 (1979), 89–92.

    Google Scholar 

  • Galin, M. B. and Kirichkov, S. Ye.: Effect of orography on the nonzonal circulation of the atmosphere and blocking formations, Atmos. Ocean. Phys. 21, (1985), 533–538.

    Google Scholar 

  • Gill, A. E.: Atmosphere-Ocean Dynamics, Academic Press, New York, 1982.

    Google Scholar 

  • Glendinning D. and Sparrow C.: Local and global behaviour near homoclinic orbits, J. Stat. Phys. 35, 645–697.

  • Gottlieb, D. and Orszag, S. A. Numerical Analysis of Spectral Methods, Regional Conference Series in Applied Mathematics 26, SIAM, Philadelphia, 1977.

    Google Scholar 

  • Grebogi, C., Ott, E., and Yorke, J. A.: Crises, sudden changes in chaotic attractors, and transient chaos, Physica 7D (1986), 181–200.

    Google Scholar 

  • Guckenheimer, J. and Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vectorfields, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  • Hess P. and Brezowsky H.: Katalog der Grosswetteranlagen Deutschlands, Ber. Dtsch. Wetterdienstes 113 (1969).

  • Jarraud, M. and Baede, A. P. M.: The use of spectral techniques in numerical weather prediction, Lect. Appl. Math. 22 (1985), 1–41.

    Google Scholar 

  • Källén, E.: The nonlinear effects of orographic and momentum forcing in a low-order, barotropic model, J. Atmos. Sci. 38 (1981), 2150–2163.

    Google Scholar 

  • Källén, E.: Bifurcation properties of quasi-geostrophic, barotropic models and their relation to atmospheric blocking, Tellus 34 (1982), 255–265.

    Google Scholar 

  • Källén, E.: A note on orographically induced instabilities in two-layer models, J. Atmos. Sci. 40 (1983), 500–505.

    Google Scholar 

  • Källén, E.: On hysteresis-like effects in orographically forced models, Tellus 37A (1985), 249–257.

    Google Scholar 

  • Keller, H. B.: Numerical solution of bifurcation and nonlinear eigenvalue problems, in P. H. Rabinowitz (ed.), Applications of Bifurcation Theory, Academic Press, New York, 1977, pp. 359–384.

    Google Scholar 

  • Kottalam, J., West, B. J., and Lindenberg, K.: Fluctuations and dissipation in multiple flow equilibria, preprint, University of California at San Diego, 1987.

  • Kruse, H. A. and Hasselman, K.: Investigation of processes governing the large-scale variability of the atmosphere using low-order barotropic spectral models as a statistical tool, Tellus 38A (1986), 12–24.

    Google Scholar 

  • Kubota, S.: Some characteristics of the barotropic atmosphere with respect to the scales of disturbance, Papers Meteorol. Geoph. (Tokyo) 12 (1961), 183–198.

    Google Scholar 

  • Kubota, S., Hirose, M., Kikuchi, Y., and Kurihara, Y.: Barotropic forecasting with the use of surface spherical harmonic representations, Papers Meteor Geoph. (Tokyo) 12 (1961), 199–215.

    Google Scholar 

  • Legras, B. and Ghil, M.: Persistent anomalies, blocking and variations in atmospheric predictability, J. Atmos. Sci. 42 (1985), 433–471.

    Google Scholar 

  • Lilly, D. K.: On the computational stability of numerical solutions of time-dependent, non-linear geophysical fluid dynamics problems, Mon. Wea. Rev. 93, (1965), 11–26.

    Google Scholar 

  • Lorenz, E. N.: Maximum simplification of the dynamic equations, Tellus 12 (1960), 243–254.

    Google Scholar 

  • Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963a), 130–141.

    Google Scholar 

  • Lorenz, E. N.: The mechanics of vacillation, J. Atmos. Sci. 20 (1963b), 448–464.

    Google Scholar 

  • Lorenz, E. N.: A study of the predictability of a 28-variable atmospheric model, Tellus 17 (1965), 321–333.

    Google Scholar 

  • Lorenz, E. N.: The predictability of a flow which possesses many scales of motion, Tellus 21 (1969), 289–307.

    Google Scholar 

  • Lorenz, E. N.: Attractor sets and quasi-geostrophic equilibrium, J. Atmos. Sci. 37 (1980), 1685–1699.

    Google Scholar 

  • Lorenz, E. N.: Low-order models of atmospheric circulations, J. Meteor. Soc. Japan 60 (1982), 255–267.

    Google Scholar 

  • Lorenz, E. N.: Irregularity: a fundamental property of the atmosphere, Tellus 36A (1984), 98–110.

    Google Scholar 

  • Mitchell, K. E. and Dutton, J. A.: Bifurcations from stationary to periodic solutions in a low-order model of forced, dissipative barotropic flow, J. Atmos. Sci. 38 (1981), 690–716.

    Google Scholar 

  • Namias, J.: The index cycle and its role in the general circulation, J. Meteorol. 7 (1950), 130–139.

    Google Scholar 

  • Oerlemans, J.: An objective approach to breaks in the weather, Mon. Wea. Rev. 106 (1978), 1672–1679.

    Google Scholar 

  • Opsteegh, J. D. and Vernekar, A. D. A simulation of the January standing wave pattern including the effect of transient eddies, J. Atmos. Sci. 39 (1982), 734–744.

    Google Scholar 

  • Orszag, S. A.: Transform method for calculation of vector coupled sums. Application to the spectral form of the vorticity equation, J. Atmos. Sci. 27 (1970), 890–895.

    Google Scholar 

  • Pedlosky, J.: Geophysical Fluid Dynamics, Springer-Verlag, New York, 1979.

    Google Scholar 

  • Pedlosky, J.: Resonant topographic waves in barotropic and baroclinic flows, J. Atmos. Sci. 38 (1981), 2626–2641.

    Google Scholar 

  • Phillips, N. A.: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model, Tellus 6 (1954), 273–286.

    Google Scholar 

  • Pierrehumbert, R. T. and Malguzzi, P.: Forced coherent structures and local multiple equilibria in a barotropic atmosphere, J. Atmos. Sci. 41 (1984), 246–257.

    Google Scholar 

  • Platzman, G. W.: The analytical dynamics of the spectral vorticity equation, J. Atmos. Sci. 19 (1962), 313–328.

    Google Scholar 

  • Reinhold, B. B. and Pierrehumbert, R. T.: Dynamics of weather regimes: quasi-stationary waves and blocking, Mon. Wea. Rev. 110 (1982), 1105–1145.

    Google Scholar 

  • Roads, J. O.: Stable near-resonant states forced by orography in a simple baroclinic model, J. Atmos. Sci. 37 (1980), 2381–2395.

    Google Scholar 

  • Roads, J. O.: Stable and unstable near-resonant states in multilevel, severely truncated, quasi-geostrophic models, J. Atmos. Sci. 39 (1982), 203–224.

    Google Scholar 

  • Saltzman, B.: On the maintenance of the large-scale quasi-permanent disturbances of the atmosphere, Tellus 11 (1959), 425–431.

    Google Scholar 

  • Shirer, H. N. and Wells, R.: Mathematical Structure of the Singularities at the Transitions between Steady States in Hydrodynamic Systems, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  • Silberman, I.: Planetary waves in the atmosphere, J. Meteor. 11 (1954), 27–34.

    Google Scholar 

  • Silnikov, L. P.: A case of the existence of a denumerable set of periodic motions, Sov. Math. Dokl. 36 (1965), 163–166.

    Google Scholar 

  • Thompson, J. M. T. and Stewart, H. B.: Nonlinear Dynamics and Chaos, Wiley, Chichester, 1986.

    Google Scholar 

  • Tung, K. K. and Rosenthal, A. J.: Theories of multiple equilibria—a critical reexamination. Part I: barotropic models, J. Atmos. Sci. 42 (1985), 2804–2819.

    Google Scholar 

  • Voigt, R. G., Gottlieb, D., and Yousoff Husaini, M. (eds.): Spectral Methods for Partial Differential Equations, SIAM, Philadelphia, 1984.

    Google Scholar 

  • Vickroy, J. G. and Dutton, J. A.: Bifurcation and catastrophe in a simple, forced, dissipative quasi-geostrophic flow, J. Atmos. Sci. 36 (1979), 42–52.

    Google Scholar 

  • Wiin-Nielsen, A.: Steady states and stability properties of a low-order barotropic system with forcing and dissipation, Tellus 31 (1979), 375–386.

    Google Scholar 

  • Wiin-Nielsen, A.: Low- and high-index steady states in a low-order model with vorticity forcing, Contr. Atmos. Phys. 57 (1984), 291–306.

    Google Scholar 

  • Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A.: Determining Lyapunov exponents from a time series, Physica 6D (1985), 285–317.

    Google Scholar 

  • Yao, M. S.: Maintenance of quasi-stationary waves in a two-level quasi-geostrophic spectral model with topography, J. Atmos. Sci. 37 (1980), 29–43.

    Google Scholar 

  • Yoden, S.: Nonlinear interactions in a two-layer, quasi-geostrophic, low-order model with topography. Part I: zonal flow-forced wave interactions, J. Meteorol. Soc. Japan 61 (1983a), 1–18.

    Google Scholar 

  • Yoden, S.: Nonlinear interactions in a two-layer, quasi-geostrophic, low-order model with topography. Part II: interactions between zonal flow, forced waves and free waves, J. Meterol. Soc. Japan 61 (1983b), 19–35.

    Google Scholar 

  • Yoden, S.: Bifurcation properties of a quasi-geostrophic, barotropic, low-order model with topography, J. Metorol. Soc. Japan 63 (1985), 535–546.

    Google Scholar 

  • Yoden, S. and Mukougawa, H.: Instabilities of a baroclinic zonal flow in the presence of surface topography, J. Meteorol. Soc. Japan 61 (1983), 789–804.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Present affiliation: Institute of Meteorology and Oceanography, Princetonplein 5, 3584 CC, Utrecht, The Netherlands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Swart, H.E. Low-order spectral models of the atmospheric circulation: A survey. Acta Appl Math 11, 49–96 (1988). https://doi.org/10.1007/BF00047114

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047114

AMS subject classifications (1980)

Key words and phrases

Navigation