Skip to main content
Log in

Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery

  • RNA Processing and Stability
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The removal of introns from pre-mRNA transcripts and the concomitant ligation of exons is known as pre-mRNA splicing. It is a fundamental aspect of constitutive eukaryotic gene expression and an important level at which gene expression is regulated. The process is governed by multiple cis-acting elements of limited sequence content and particular spatial constraints, and is executed by a dynamic ribonucleoprotein complex termed the spliceosome. The mechanism and regulation of pre-mRNA splicing, and the sub-nuclear organisation of the spliceosomal machinery in higher plants is reviewed here.

Heterologous introns are often not processed in higher plants indicating that, although highly conserved, the process of pre-mRNA splicing in plants exhibits significant differences that distinguish it from splicing in yeast and mammals. A fundamental distinguishing feature is the presence of and requirement for AU or U-rich intron sequence in higher-plant pre-mRNA splicing. In this review we document the properties of higher-plant introns and trans-acting spliceosomal components and discuss the means by which these elements combine to determine the accuracy and efficiency of pre-mRNA processing. We also detail examples of how introns can effect regulated gene expression by affecting the nature and abundance of mRNA in plants and list the effects of environmental stresses on splicing.

Spliceosomal components exhibit a distinct pattern of organisation in higher-plant nuclei. Effective probes that reveal this pattern have only recently become available, but the domains in which spliceosomal components concentrate were identified in plant nuclei as enigmatic structures some sixty years ago. The organisation of spliceosomal components in plant nuclei is reviewed and these recent observations are unified with previous cytochemical and ultrastructural studies of plant ribonucleoprotein domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abovich N, Liao XC, Rosbash M: The yeast MUD2 protein: an interaction with PRP11 defines a bridge between commitment complexes and U2snRNP addition. Genes Devel 8: 843–854 (1994).

    Google Scholar 

  2. Aebi M, Hornig H, Padgett RA, Reiser J, Weissmann C: Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47: 555–565 (1986).

    Google Scholar 

  3. Accotto GP, Donson J, Mullineaux PM: Mapping of Digitaria streak virus transcripts reveals different RNA species from the same transcription unit. EMBO J 8: 1033–1039 (1989).

    Google Scholar 

  4. Andrade LE, Chan EK, Raska I, Peebles CL, Roos G, Tan EM: Human autoantibody to a novel protein of the nuclear coiled body: immunological characterisation and cDNA cloning of p80 coilin. J Exp Med 173: 1407–1409 (1991).

    Google Scholar 

  5. Andrade LE, Tan EM, Chan EK: Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc Natl Acad Sci USA 90: 1947–1951 (1993).

    Google Scholar 

  6. Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJM: The expression of a nopaline synthase-human growth hormone chimaeric gene in transformed tabacco and sunflower callus tissue. Plant Mol Biol 6: 347–357 (1986).

    Google Scholar 

  7. Barlow PW: Nucleolus-associated bodies (karyosomes) in dividing and differentiating plant cells. Protoplasma 115: 1–10 (1983).

    Google Scholar 

  8. Barlow PW: Changes in the frequency of two types of nuclear body during the interphase of meristematic plant cells. Protoplasma 118: 104–113 (1983).

    Google Scholar 

  9. Beggs JD: Yeast splicing factors and genetic strategies for their analysis. In: Lamond A (ed) Pre-mRNA Processing. R.G. Landes Publishers, Georgetown, TX (1995).

    Google Scholar 

  10. Bennet M, Pinol-Roma S, Staknis D, Dreyfuss G, Reed R: Differential binding of heterogenous nuclear ribonucleoproteins to mRNA precursors prior to spliceosome assembly in vitro. Mol Cell Biol 12: 3165–3175 (1992).

    Google Scholar 

  11. Bennet M, Michaud S, Kingston J, Reed R: Protein components specifically associated with prespliceosome and spliceosome complexes. Genes Devel 6: 1986–2000 (1992).

    Google Scholar 

  12. Berget SM: Exon recognition in vertebrate splicing. J Biol Chem 270: 2411–2414 (1995).

    Google Scholar 

  13. Beven AF, Simpson GG, Brown JWS, Shaw PJ: The organization of spliceosomal components in the nuclei of higher plants. J Cell Sci 108: 509–518 (1995).

    Google Scholar 

  14. Beyer AL, Osheim YN: Splice site selection, rate of splicing and alternative splicing on nascent transcripts. Genes Devel 2: 754–765 (1988).

    Google Scholar 

  15. Birney E, Kumar S, Krainer AR: Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucl Acids Res 21: 5803–5816 (1993).

    Google Scholar 

  16. Blencowe BJ, Nickerson JA, Issner R, Penman S, Sharp PA: Association of nuclear matrix antigens with exon-containing splicing complexes. J Cell Biol 127: 593–607 (1994).

    Google Scholar 

  17. Blencowe BJ, Issner R, Kim J, McCaw P, Sharp PA: New proteins related to the Ser-Arg family of splicing factors. RNA 1: 852–865 (1995).

    Google Scholar 

  18. Boelens WC, Dargemont C, Mattaj IW: Export of mRNA through the nuclear pore complex. In Lamond A (ed) Pre-mRNA Processing, pp. 173–186. R.G. Landes Publishers, Georgetown, TX (1995).

    Google Scholar 

  19. Bohmann K, Ferrreira J, Santama N, Weis K, Lamond AI: Molecular analysis of the coiled body. J Cell Science (Suppl) 19: 107–113 (1995).

    Google Scholar 

  20. Bond U: Heat shock but not other stress inducers leads to the disruption of a subset of snRNPs and inhibition of in vitro splicing in HeLa cells. EMBO J 7: 3509–3518 (1988).

    Google Scholar 

  21. Bradley D, Carpenter R, Sommer H, Hartley N, Coen E: Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72: 85–95 (1993).

    Google Scholar 

  22. Brasch K, Ochs RL: Nuclear bodies (NB): a newly ‘rediscovered organelle’ Exp Cell Res 202: 211–223 (1992).

    Google Scholar 

  23. Bregman DB, Du van der Zee S, Warren SL: Transcription dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J Cell Biol 129: 287–298 (1995).

    Google Scholar 

  24. Brown JWS: A catalogue of splice junction and putative branchpoint sequences from plant introns. Nucl Acid Res, 14: 9549–9559 (1986).

    Google Scholar 

  25. Brown JWS, Feix G, Frendewey D: Accurate in vitro splicing of two pre-mRNA plant introns in a HeLa cell nuclear extract. EMBO J 5: 2749–2758 (1986).

    Google Scholar 

  26. Burgess SM, Guthrie CA: Beat the clock-paradigms for NTPases in the maintenance of biological fidelity. Trends Biochem Sci 18: 381–384 (1993).

    Google Scholar 

  27. Burgess SM, Guthrie CA: Mechanism to enhance mRNA splicing fidelity:the RNA dependent ATPase Prp 16 governs usage of a discard pathway for aberant lariat intermediates. Cell 73: 1377–1391 (1993).

    Google Scholar 

  28. Callis J, Fromm M, Walbot V: Introns increase gene expression in cultured maize cells. Genes Devel 1: 1183–1200 (1987).

    Google Scholar 

  29. Calvio C, Neubaue G, Mann M, Lamond AI: Identification of hnRNP P2 as TLS/FUS using electrospray mass spectrometry. RNA 1: 724–733 (1995).

    Google Scholar 

  30. Cardon GH, Frey M, Saedler H, Gierl A: Mobility of the maize transposable element En/Spm in Arabidopsis thaliana. Plant J 3: 773–784 (1993).

    Google Scholar 

  31. Carle-Urioste JC, Ko CH, Benito M-I, Walbot V: In vivo analysis of intron processing using splicing-dependent reporter gene assays. Plant Mol Biol 26: 1785–1795 (1994).

    Google Scholar 

  32. Carmo-Fonseca M, Pepperkok R, Sproat BS, Ansorge W, Swanson MS, Lamond AI: In vivo detection of snRNP-rich organelles in the nuclei of mammalian cells. EMBO J 10: 1863–1873 (1991).

    Google Scholar 

  33. Carmo-Fonseca M, Tollervy D, Barabino SML, Merdes A, Brunner C, Lamond AI: Mammalian nuclei contain foci which are highly enriched in components of the pre-mRNA splicing machinery. EMBO J 10: 195–206 (1991).

    Google Scholar 

  34. Carmo-Fonseca M, Pepperkok R, Carvalho MT, Lamond AI: Transcription-dependent colocalization of the U1, U2, U4/6, and U5 snRNPs in coiled bodies. J Cell Biol 117: 1–14 (1992).

    Google Scholar 

  35. Caromo-Fonseca M, Ferreira J, Lamond AI: Assembly of snRNP-containing coiled bodies is regulated in interphase and mitosis: evidence that the coiled body is a kinetic nuclear structure. J Cell Biol 120: 841–852 (1993).

    Google Scholar 

  36. de Carvalho Niebel F, Frendo P, Van Montagu M, Cornelissen M: Post-transcriptional cosuppression of β-1,3-glucanase genes does not affect accumulation of transgene nuclear mRNA. Plant Cell 7: 347–358 (1995).

    Google Scholar 

  37. Chaboute ME, Chaubert N, Gigot C, Philips G: Histones and histone genes in higher plants: structure and genomic organization. Biochemie 75: 523–531 (1993).

    Google Scholar 

  38. Chamberland H, Lafontaine JG: Localization of snRNP antigens in nucleolus associated bodies: study of plant interphasic nuclei by confocal and electron microscopy. Chromosoma 102: 220–226 (1993).

    Google Scholar 

  39. Chanfreau G, Legrain P, Dujon B, Jacquier A: Interaction between the first and last nucleotides of pre-mRNA introns is a determinant of 3′ splice site selection in S. cerevisiae. Nucl Acids Res 22: 1981–1987 (1994).

    Google Scholar 

  40. Chapman KB, Boeke JD: Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65: 483–492 (1991).

    Google Scholar 

  41. Chee PP, Klassy RC, Slighton JL: Expression of a bean storage protein ‘phaseolin minigene’ in foreign plant tissues. Gene 41: 47–57 (1986).

    Google Scholar 

  42. Choi YD, Grabowski PJ, Sharp PA, Dreyfuss G: Heterogeneous nuclear ribonucleoporteins: role in RNA splicing. Science 231: 1534–1539 (1986).

    Google Scholar 

  43. Christensen AH, Sharrock RA, Quail PH: Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing and promoter activity following transfer to protoplast by electroporation. Plant Mol Biol 18: 675–689 (1992).

    Google Scholar 

  44. Company, Arenas J, Abelson J: Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature 349: 487–493 (1991).

    Google Scholar 

  45. Connelly SC, Filipowicz W: Activity of chimeric U small nuclear RNAs (UsnRNA)/mRNA genes in transfected protoplasts of Nicotiana plumbaginifolia: UsnRNA 3′ end formation and transcription initiation can occur independently in plants. Mol Cell Biol 13: 6403–6415 (1993).

    Google Scholar 

  46. Conrad R, Liou RF, Blumenthal T: Functional analysis of a C. elegans trans-splice acceptor. Nucl Acids Res 21: 913–919 (1993).

    Google Scholar 

  47. Conrad R, Lea K, Blumenthal T: SL 1 trans-splicing specified by AU-rich synthetic RNA inserted at the 5′ end of Caenorhabditis elegans pre-mRNA. RNA 1: 164–170 (1995).

    Google Scholar 

  48. Crispino JD, Blencowe BJ, Sharp PA: Complemetation by SR proteins of pre-mRNA splicing reactions depleted of U1snRNP. Science 265: 1866–1869 (1994).

    Google Scholar 

  49. Crispino JD, Sharp PA: A U6 snRNA:pre-mRNA interaction can be rate-limiting for U1-independent splicing. Genes Devel 9: 2314–2323 (1995).

    Google Scholar 

  50. Csank C, Taylor FM, Martindale DW: Nuclear pre-mRNA introns: analysis and comparison of intron sequences from Tetrahymena thermophia and other eukaryotes. Nucl Acid Res 18: 5133–5141 (1990).

    Google Scholar 

  51. Czarnecka E, Nagao RT, Key JL, Gurley JB: Characterization of Gmhsp26-A, a stress gene encoding a divergent heat shock protein of soybean: heavy metal-induced inhibition of intron processing. Mol Cell Biol 8: 1113–1122 (1988).

    Google Scholar 

  52. Dangeard P: Recherches sur la structure des noyaux chez quelques Angiospermes. Botaniste 28: 291 (1937).

    Google Scholar 

  53. Dean C, Favreau M, Bond-Nutter D, Bedbrook J, Dunsmuir P: Sequences downstream of translation start regulate quantitative expression of two Petunia rbcS genes. Plant Cell 1: 201–208 (1989).

    Google Scholar 

  54. Delorme V, Giranton J-L, Hatzfeld Y, Heizmann P, Ariza MJ, Dumas C, Gaude T, Cock JM: Characterization of the S-locus genes, SLG and SRK, of the Brassica S 3 halotype: identification of a membrane-localized protein encoded by the S locus receptor kinase gene. Plant J 7: 429–440 (1995).

    Google Scholar 

  55. Dietrich MA, Prenger JP, Guilfoyle TJ: Analysis of the genes encoding the largest subunit of RNA polymerase II in Arabidopsis and soybean. Plant Mol Biol 15: 207–223 (1990).

    Google Scholar 

  56. Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG: hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62: 289–231 (1993).

    Google Scholar 

  57. Eftimiu-Heim P: Micronucléoles et caryocinèse chez les Cucurbitacées. Botaniste 28: 55 (1937).

    Google Scholar 

  58. Eperon LP, Graham IR, Griffiths AD, Eperon IC: Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase. Cell 54: 393–401 (1988).

    Google Scholar 

  59. Fakan S: Perichromatin fibrils are in situ forms of nascent transcripts. Trends Cell Biol 4: 86–90 (1994).

    Google Scholar 

  60. Ferreira JA, Carmo-Fonseca M, Lamond AI: Differential interactions of splicing snRNPs with coiled bodies and interchromatin granules during mitosis and assembly of daughter cell nuclei. J Cell Biol 126: 11–23 (1994).

    Google Scholar 

  61. Field DJ, Friesen JD: Functionally redundant interactions between U2 and U6 spliceosomal snRNAs. Genes Devel 10: 489–501 (1996).

    Google Scholar 

  62. Filipowicz W, Kiss T: Structure and function of nucleolar snRNPs. Mol Biol Rep 18: 149–156 (1993).

    Google Scholar 

  63. Filipowicz W, Gniadkowski M, Klahre U, Liu H-X: Pre-mRNA splicing in plants. In: Lamond A (ed) Pre-mRNA Processing, pp. 65–78. R.G. Landes Publishers, Georgetown, TX (1995).

    Google Scholar 

  64. Frey M, Tavantzis SM, Saedler H: The maize En-1/Spm element transposes in potato. Mol Gen Genet 217: 172–177 (1989).

    Google Scholar 

  65. Frey MR, Matera AG: Coiled bodies contain U7 small nuclear RNA and associate with specific DNA sequences in interphase human cells. Proc Natl Acad Sci USA 92: 5915–5919 (1995).

    Google Scholar 

  66. Fu H, Park WD: Sink-and vascular-associated sucrose synthase functions are encoded by diferent gene classes in potato. Plant Cell 7: 1369–1385 (1995).

    Google Scholar 

  67. Fu H, Kim SY, Park WD: High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5′ and 3′ flanking sequences and the leader intron. Plant Cell 7: 1387–1394 (1995).

    Google Scholar 

  68. Fu H, Kim SY, Park WD: A potato Sus3 sucrose synthase gene contains a context-dependent 3′ element and a leader intron with both positive and negative tissue-specific effects. Plant Cell 7: 1395–1403 (1995).

    Google Scholar 

  69. Fu X-D: Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 365: 82–85 (1993).

    Google Scholar 

  70. Fu X-D: The superfamily of arginine/serine-rich splicing factors. RNA 1: 663–680. (1995).

    Google Scholar 

  71. Fu X-D, Mayeda A, Maniatis T, Krainer AR: General splicing factors SF2 and SC35 have equivalent activities in vitro and both affect alternative 5′ and 3′ splice site selection. Proc Natl Acad Sci USA 89: 11224–11228 (1992).

    Google Scholar 

  72. Fuller-Pace FV: RNA helicases: modulators of RNA structure. Trends Cell Biol 4: 271–274 (1994).

    Google Scholar 

  73. Fütterer J, Potrykus I, Valles Brau MP, Dasgupta I, Hull R, Hohn T: Splicing in a plant pararetrovirus. Virology 198: 663–676 (1994).

    Google Scholar 

  74. Gall JG: Spliceosomes and snurposomes. Science 252: 1499–1500 (1991).

    Google Scholar 

  75. Gallie DR, Young TE: The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expresion. Plant Physiol 106: 929–939 (1994).

    Google Scholar 

  76. Gierl A: The En/Spm transposable elements of maize. Curr Top Microbiol Immunol 204: 145–159 (1995).

    Google Scholar 

  77. Giranton J-L, Ariza MJ, Dumas C, Cock JM, Gaude T: The S locus receptor kinase gene encodes a soluble glycoprotein corresponding to the SRK extracellular domain in Brassica oleracea. Plant J 8: 827–834 (1995).

    Google Scholar 

  78. Glyn MCP, Leitch AR: The distribution of a spliceosome protein in cereal (Triticaceae) interphase nuclei from cells with different metabolic activities and through the cell-cycle. Plant J 8: 531–540 (1995).

    Google Scholar 

  79. Gniadkowski M, Hemmings-Mieszczak M, Klahre U, Liu H-X, Filipowicz W: Characterisation of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia. Nucl Acids Res 24: 619–627 (1996).

    Google Scholar 

  80. Goguel V, Wang Y, Rosbash M: Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicing. Mol Cell Biol 13: 6841–6848 (1993).

    Google Scholar 

  81. Goodall GJ, Filipowicz W: The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58: 473–483 (1989).

    Google Scholar 

  82. Goodall GJ, Filipowicz W: The minimum functional length of pre-mRNA introns in monocots and dicots. Plant Mol Biol 14: 727–733 (1990).

    Google Scholar 

  83. Goodall GJ, Filipowicz W: Different effects of intron nucleotide composition and seconday structure on pre-mRNA splicing in monocot and dicot plants. EMBO J 10: 2635–2644 (1991).

    Google Scholar 

  84. Goodall GJ, Kiss T, Filipowicz W: Nuclear RNA splicing and small nuclear RNAs and their genes in higher plants. Oxf Surv Plant Cell Mol Biol 7: 255–296 (1991).

    Google Scholar 

  85. Görlach J, Raesecke H-R, Abel G, Wehrli R, Amrhein N, Schmid J: Organ-specific differences in the ratio of alternatively spliced chorismate synthase (LeCS2) transcripts in tomato. Plant J 8: 451–456 (1995).

    Google Scholar 

  86. Gozani O, Patton JG, Reed R: A novel set of of spliceosome associated proteins and the essential splicing factor PSF bind stably to pre-mRNA prior to catalytic step II of the splicing reaction EMBO J 13: 3356–3367 (1994).

    Google Scholar 

  87. Gozani O, Feld R, Reed R: Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A. Genes Devel 10: 233–243 (1996).

    Google Scholar 

  88. Grotewold E, Athma P, Peterson P: Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors. Proc Natl Acad Sci USA 88: 4587–4591 (1991).

    Google Scholar 

  89. Gui J-F, Lane WS, Fu X-D: A serine kinase regulates intracellular localization of splicing factors in the cell-cycle. Nature 369: 678–682 (1994).

    Google Scholar 

  90. Hall SL, Padgett RA: Requirement of U12 snRNA for in vivo splicing of a minor class of eukaryotic nuclear pre-mRNA introns. Science 271: 1716–1718 (1996).

    Google Scholar 

  91. Hanley BA, Schuler MA: Developmental expression of plant snRNAs Nucl Acids Res 19: 6319–6325 (1991).

    Google Scholar 

  92. Hartmuth K, Barta A: In vitro processing of a plant prre-mRNA in HeLa cell nuclear extract. Nucl Acids Res 14: 7513–7528 (1986).

    Google Scholar 

  93. Hayashi M, Tsugeki R, Kondo M, Mori H, Nishimura M: Pumpkin hydroxypyruvate reductases with and without a putative C-terminal signal for targeting to microbodies may be produced by alternative splicing. Plant Mol Biol 30: 183–189 (1996).

    Google Scholar 

  94. Herschlag D: RNA chaperones and the RNA folding problem. J Biol Chem 270: 20871–20874 (1995).

    Google Scholar 

  95. Hershberger RJ, Benito M-I, Hardeman KJ, Warren C, Chandler VL, Walbot V: Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize. Genetics 140: 1087–1098 (1995).

    Google Scholar 

  96. Hirose T, Sugita M, Sugiura M: cDNA structure, expression and nucleic acid-binding properties of three RNA-binding proteins in tobacco: occurence of tissue-specific alternative splicing. Nucl Acids Res 21: 3981–3987 (1993).

    Google Scholar 

  97. Hodges PE, Beggs JD: RNA splicing-U2 fulfils a commitment. Curr Biol 4: 264–267 (1994).

    Google Scholar 

  98. Hoffman BE, Grabowski PJ: U1 snRNP targets an essential splicing factor, U2AF65, to the 3′ splice site by a network of interactions spanning the exon. Genes Devel 6: 2554–2568 (1992).

    Google Scholar 

  99. Hopf N, Plesofsky-Vig N, Brambl R: The heat shock response of pollen and other tissues of maize. Plant Mol Biol 19: 623–630 (1992).

    Google Scholar 

  100. Huang MT, Gorman CM: Intervening sequences increase efficiency of RNA 3′ processing and accumulation of cytoplasmic RNA. Nucl Acids Res 18: 937–947 (1990).

    Google Scholar 

  101. Hunt AG, Mogen BD, Chu NM, Chua N-H: The SV40 small t intron is accurately and efficiently spliced in tobacco cells. Plant Mol Biol 16: 375–379 (1991).

    Google Scholar 

  102. Izaurralde E, Mattaj IW: RNA export. Cell: 81 153–159 (1995).

    Google Scholar 

  103. Izaurralde E, Lewis J, McGuigan C, Jankowska M, Darzynkiewicz E, Mattaj IW: A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78: 657–668 (1994).

    Google Scholar 

  104. Jackson DA, Hassan AB, Errington RJ, Cook PR: Visualisation of focal sites of transcription within human nuclei. EMBO J 12: 1059–1065 (1993).

    Google Scholar 

  105. Jiménez-García LF, Segura-Valdez M de L, Ochs RL, Rothblum LI, Hannan R, Spector DL: Nucleogenesis: U3 snRNA-containing prenucleolar bodies move to sites of active pre-rRNA transcription after mitosis. Mol Biol Cell 5: 955–966 (1994).

    Google Scholar 

  106. Kandels-Lewis S, Seraphin B: Role of U6 snRNA in 5′ splice site selection. Science 262: 2035–2039 (1993).

    Google Scholar 

  107. Keith B, Chua N-H: Monocot and dicot pre-mRNAs are processed with different efficiencies in transgenic tobacco. EMBO J 5: 2419–2425 (1986).

    Google Scholar 

  108. Keller W: 3′ end cleavage and polyadenylation of nuclear messenger RNA precursors. In: Lamond A (ed). Pre-mRNA Processing, pp. 113–128. R.G. Landes Publishers, Georgetown, TX (1995).

    Google Scholar 

  109. Kim SH, Smith J, Claude A, Lin R-J: The purified yeast pre-mRNA splicing factor PRP2 is an RNA dependent NTPase. EMBO J 11: 2319–2326 (1992).

    Google Scholar 

  110. Kiss T, Marshallsay C, Filipowicz W: Alteration of the RNA polymerase specificity of U3 snRNA gene during evolution and in vitro. Cell 65: 517–526 (1991).

    Google Scholar 

  111. Kiss-László Z, Blanc S, Hohn T: Splicing of a cauliflower mosaic virus 35S RNA is essential for viral infectivity. EMBO J 14: 3552–3562 (1995).

    Google Scholar 

  112. Kohtz JD, Jamison SF, Wil CL, Zuo P, Lührmann R, Garcia-Blanco MA, Manley JL: Protein-protein interactions and 5′ splice site recognition in mammalian mRNA precursors. Nature 368: 119–124 (1994).

    Google Scholar 

  113. Konarska MM, Sharp P: Electrophoretic separation of complexes involved in the splicing of precursors to mRNA. Cell 46: 845–855 (1986).

    Google Scholar 

  114. Kopriva S, Cossu R, Bauwe H: alternative splicing results in two different transcripts for H-protein of the glycine cleavage system in the C4 species Flaveria trinervia. Plant J 8: 435–441 (1995).

    Google Scholar 

  115. Korning PG, Hebsgaard SM, Rouzé P, Brunak S: Cleaning the GenBank Arabidopsis thaliana data set. Nucl Acids Res 24: 316–320 (1996).

    Google Scholar 

  116. Krainer AR, Mayeda A, Kozak D, Binns G: Functional expression of cloned human splicing factor SF2: homolgy to RNA-binding proteins U1 70K, and Drosophila splicing regulators. Cell 66: 383–394 (1991).

    Google Scholar 

  117. Krämer A: The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem 65: 367–409 (1996).

    Google Scholar 

  118. Kulesza H, Simpson GG, Waugh R, Beggs JD, Brown JWS: Detection of a plant spliceosomal protein analogous to the yeast splicing component, PRP8. FEBS Lett 318: 4–6 (1993).

    Google Scholar 

  119. Kumar V, Trick M: Expression of the S-locus receptor kinase multigene family in Brassica oleracea. Plant J 6: 807–813 (1994).

    Google Scholar 

  120. Lafontaine JG: A light and electron microscope study of small, spherical nuclear bodies in meristematic cells of Allium cepa, Vicia faba and Raphanus sativus. J Cell Biol 26: 1–17 (1965).

    Google Scholar 

  121. Lafontaine JG, Luck BT, Gugg S: Nucleolus-associated bodies in meristematic cells of two plant species (Cicer arietinum and Leucaena glauca) with different ploidy levels. Can J Bot 69: 1329–1336 (1991).

    Google Scholar 

  122. Lafontaine JG, Chamberland H: Relationship of nucleolus associated bodies with the nucleolar organizer tracks in plant interphase nuclei (Pisum sativum). Chromosoma 103: 545–553 (1995).

    Google Scholar 

  123. Lamond AI, Carmo-Fonseca M: Localisation of splicing snRNPs in mammalian cells. Mol Biol Rep 18: 127–133 (1993).

    Google Scholar 

  124. Lamond AI, Carmo-Fonseca M: The coiled body. Trends in Cell Biol. 3: 198–204 (1993).

    Google Scholar 

  125. Lamond AI, Konarska MM, Sharp PA: A mutational analysis of spliceosome assembly: evidence for splice site collaboration during spliceosome formation. Genes Devel 1: 532–543 (1987).

    Google Scholar 

  126. Larkin R, Guilfoyle T: The second largest subunit of RNA polymerase II from Arabidopsis thaliana. Nucl Acids Res 21: 1038 (1993).

    Google Scholar 

  127. Lavigueur A, La Branche H, Kornblihtt AR, Chabot B: A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Devel 7: 2405–2417 (1993).

    Google Scholar 

  128. Lazar G, Schaal T, Maniatis T, Goodman HM: Identification of a plant serine-arginine-rich protein similar to the mammalian splicing factor SF2/ASF. Proc Natl Acad Sci USA 92: 7672–7676 (1995).

    Google Scholar 

  129. Lazarowitz SG: Geminiviruses: genome structure and gene function. Crit Rev Plant Sci 11: 327–349 (1992).

    Google Scholar 

  130. Lazarowitz SG, Pinder AJ, Damsteegt VD, Rogers SG: Maize streak virus genes essential for systemic spread and symptom development. EMBO J 8: 1023–1032 (1989).

    Google Scholar 

  131. Leader DJ, Sanders JF, Waugh R, Shaw P, Brown JWS: Molecular characterisation of plant U14 small nucleolar RNA genes: closely linked genes are transcribed as polycistronic U14 transcripts. Nucl Acids Res 22: 5196–5203 (1994).

    Google Scholar 

  132. Lesser CF, Guthrie C: Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science 262: 1982–1988 (1993).

    Google Scholar 

  133. Li H, Bingham PM: Arginine/serine-rich domains of the su(wa) and tra RNA processing regulators target proteins to a subnuclear compartment implicated in splicing. Cell 67: 335–342 (1991).

    Google Scholar 

  134. Lin C-H, Patton JG: Regulation of alternative 3′ splice site selction by constitutive splicing factors. RNA 1: 234–245 (1995).

    Google Scholar 

  135. Liu H-X, Goodall GJ, Kole R, Filipowicz W: Effects of secondary structure on pre-mRNA splicing: Hairpins sequestering the 5′ but not the 3′ splice site inhibit intron processing in Nicotiana plumbaginifolia. EMBO J 14: 377–388 (1995).

    Google Scholar 

  136. Liu H-X, Filipowicz W: Mapping of branch point nucleotides in mutant pre-mRNAs expressed in plant cells. Plant J 9: 369–380 (1996).

    Google Scholar 

  137. Lopato S, Mayeda A, Krainer A, Barta A: Pre-mRNA splicing in plants: characterization of SR splicing factors. Proc Natl Acad Sci USA 93: 3074–3079 (1996).

    Google Scholar 

  138. Lou H, McCullough AJ, Schuler MA: Expression of maize Adh1 intron mutants in tobacco nuclei. Plant J 3: 393–403 (1993).

    Google Scholar 

  139. Lou H, McCullough AJ, Schuler MA: 3′ splice site selection in dicot plant nuclei is position independent. Mol Cell Biol 13: 4485–4493 (1993).

    Google Scholar 

  140. Luck BT, Lafontaine JG: An ultracytochemical study of nuclear bodies in meristematic plant cells (Cicer arietinum). Can J Bot 60: 611–619 (1982).

    Google Scholar 

  141. Luehrsen KR, Walbot V: Intron creation and polyadenylation in maize are directed by AU-rich RNA. Genes Devel 8: 1117–1130 (1994).

    Google Scholar 

  142. Luehrsen KR, Walbot V: Addition of A- and U-rich sequence increases the splicing efficiency of a deleted form of a maize intron. Plant Mol Biol 24: 449–463 (1994).

    Google Scholar 

  143. Luehrsen KR, Taha S, Walbot V: Nuclear pre-mRNA processing in higher pants. Prog Nucl Acid Res Mol Biol 47: 149–193 (1994).

    Google Scholar 

  144. Lugert T, Werr W: A novel DNA-binding domain in the Shrunken initiator-binding protein (IBP1). Plant Mol Biol 25: 493–506 (1994).

    Google Scholar 

  145. Maas C, Laufs J, Grant S, Korfhage C, Werr W: The combination of a novel stimulatory element in the first exon of the maize shrunken-1 gene with the following intron enhances reporter gene expression up to 1000-fold. Plant Mol Biol 16: 199–207 (1991).

    Google Scholar 

  146. MacMillan AM, Query CC, Allerson CR, Chen S, Verdine GL, Sharp PA: Dynamic association of proteins with the pre-mRNA branch region. Genes Devel 8: 3008–3020 (1994).

    Google Scholar 

  147. Madhani HD, Guthrie C: Randomization-selection analysis of snRNAs in vivo: evidence for a tertiary interaction in the spliceosome. Genes Devel 8: 1071–1086 (1994).

    Google Scholar 

  148. Madhani HD, Guthrie C: Dynamic RNA-RNA interactions in the spliceosome. Annu Rev Genet 28: 1–26 (1994).

    Google Scholar 

  149. Magrelli A, Langenkemper K, Dehio C, Schell J, Spena A: Splicing of a rolA transcript of Agrobacterium rhizogenes in Arabidopsis. Science 266: 1986–1988 (1994).

    Google Scholar 

  150. Malatesta M, Zancanaro C, Martin TE, Chan EKL, Amalria FJ, Lührmann R, Vogel P, Fakan S: Is the coiled body involved in nucleolar functions? Exp Cell Res 211: 415–419 (1994).

    Google Scholar 

  151. Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW: Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol 15: 913–920 (1990).

    Google Scholar 

  152. Masson P, Rutherford G, Banks JA, Fedoroff N: Essential large transcripts of maize Spm transposable element are generated by alternative splicing. Cell 58: 755–765 (1989).

    Google Scholar 

  153. Matera AG, Tycowski KT, Steitz JA, Ward DC: Organization of small nucleolar ribonucleoproteins (snoRNPs) by fluoresence in situ hybridization and immunocytochemistry. Mol Biol Cell 5: 1289–1299 (1994).

    Google Scholar 

  154. Matera AG, Ward DC: Nucleoplasmic organization of small nuclear ribonucleoproteins in cultured human cells. J Cell Biol 121: 715–727 (1993).

    Google Scholar 

  155. Mattaj IW: Splicing in space. Nature 372: 727–728 (1994).

    Google Scholar 

  156. Maquat LE: When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA 1: 453–465 (1995).

    Google Scholar 

  157. Maxwell ES, Fournier MJ: The small nucleolar RNAs. Annu Rev Biochem 64: 897–934 (1995).

    Google Scholar 

  158. Mayeda A, Krainer AR: Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68: 365–375 (1992).

    Google Scholar 

  159. McCullough AJ, Lou H, Schuler MA: In vivo analysis of plant pre-mRNA splicing using an autonomously replicating vector. Nucl Acids Res 19: 3001–3009 (1991).

    Google Scholar 

  160. McCullough AJ, Lou H, Schuler MA: Factors affecting authentic 5′ splice site selection in plant nuclei. Mol Cell Biol 13: 1323–1331 (1993).

    Google Scholar 

  161. Medina MA, Moreno Díaz de la Espina S, Martin M, Fernandez-Gómez ME: Interchromatin granules in plant nuclei. Biol Cell 67: 331–339 (1989).

    Google Scholar 

  162. Meier UT, Blobel G: NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J Cell Biol 127: 1505–1514 (1994).

    Google Scholar 

  163. Mermoud JE, Cohen PT, Lamond AI: Regulation of mammalian spliceosome assembly by a protein phosphorylation mechanism. EMBO J 13: 5679–5688 (1994).

    Google Scholar 

  164. Michaud S, Reed R: A functional association between the 5′ and 3′ splice site is established in the earliest prespliceosome complex (E) in mammals. Genes Devel 7: 1008–1020 (1993).

    Google Scholar 

  165. Min H, Chan RG, Black DL: The generally expressed hnRNP F is involved in a neural specific pre-mRNA splicing event. Genes Devel 9: 2659–2671 (1995).

    Google Scholar 

  166. Montag K, Salamini F, Thompson RD: ZEMa, a member of a novel group of MADS box genes, is alternatively spliced in maize endosperm. Nucl Acids Res 23: 2168–2177 (1995).

    Google Scholar 

  167. Moreno Díaz de la Espina S, Sanchez Pinan A, Risueño MC: Localisation of acid phosphatase activity, phosphate ions and inorganic cations in plant nuclear coiled bodies. Cell Biol Int Rep 6: 601–607 (1982).

    Google Scholar 

  168. Moreno Díaz de la Espina S, Sanchez Pina A, Risueõ MC, Medina FJ, Fernández-Gómez ME: The role of plant coiled bodies in nuclear RNA metabolism. Electron Microsc 2: 240–241 (1980).

    Google Scholar 

  169. Moreno Díaz de la Espina S, Mínguez A, Vázquez-Nin GH, Echeverría OM: Fine structural organization of a nonreticulate plant cell nucleus. Chromosoma 101: 311–321 (1992).

    Google Scholar 

  170. Moore MJ, Sharp PA: Evidence of two active sites in the spliceosome provided by stereochemistry of pre-mRNA. Nature 365: 364–368 (1993).

    Google Scholar 

  171. Moore MJ, Query CC, Sharp PA: Splicing of precursors to messenger RNAs by the spliceosome. In: Gestland R, Atkins J. (eds) The RNA World, pp. 303–358. Cold Spring Harbor Lab Press (1993).

  172. Mount SM, Burks C, Hertz G, Stormo GD, White O, Fields C: Splicing signals in Drosophila: intron size, information content and consensus sequences. Nucl Acids Res 20: 4255–4262 (1992).

    Google Scholar 

  173. Müller KJ, Romano N, Gerstner O, Garcia-Maroto F, Pozzi C, Salamini, Rohde W: The barley Hooded mutation is caused by a duplication in a homebox gene intron. Nature 374: 727–730 (1995).

    Google Scholar 

  174. Mullineaux PM, Guerineau F, Accotto G-P: Processing of complementary sense RNAs of Digitaria steak virus in its host and in transgenic tobacco. Nucl Acids Res 18: 7259–7265 (1990).

    Google Scholar 

  175. Nash J, Walbot V: Bronze-2 gene expression and intron splicing patterns in cells and tissues of Zea mays I. Plant Physiol 100: 464–471 (1992).

    Google Scholar 

  176. Nash J, Luehrsen KR, Walbot V: Bronze-2 gene of maize: reconstruction of a wild-type allele and analysis of transcription and splicing. Plant Cell 2: 1039–1049 (1990).

    Google Scholar 

  177. Neel H, Weil D, Giansante C, Dautry F: In vivo cooperation between introns during pre-mRNA processing. Genes Devel 7: 2194–2205 (1993).

    Google Scholar 

  178. Nelson KK, Green MR: Mammalian U2 snRNP has a sequence-specific RNA-binding activity. Genes Devel 3: 1562–1571 (1989).

    Google Scholar 

  179. Nelson KK, Green MR: Mechanism for activation of cryptic splice site activation during pre-mRNA splicing. Proc Natl Acad Sci USA 87: 6253–6257 (1990).

    Google Scholar 

  180. Nesic D, Maquat LE: Upstream introns influence the efficiency of final intron removal and RNA 3′ end formation. Genes Devel 8: 363–375 (1994).

    Google Scholar 

  181. Newman A: Activity in the spliceosome. Cur Biol 4: 462–464 (1994).

    Google Scholar 

  182. Newman A, Norman C: U5 interacts with exon sequences at 5′ and 3′ splice sites. Cell 68: 743–754 (1992).

    Google Scholar 

  183. Nilsen TW: RNA-RNA interaction in the spliceosome: unravelling the ties that bind. Cell 78: 1–4 (1994).

    Google Scholar 

  184. Niwa M, Berget SM: Polyadenylation precedes splicing in vitro. Gene Expr 1: 5–15 (1991).

    Google Scholar 

  185. Niwa M, Berget SM: Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns. Genes Devel 5: 2086–2095 (1991).

    Google Scholar 

  186. Niwa M, Rose SD, Berget SM: In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Devel 4: 1552–1559 (1990).

    Google Scholar 

  187. Niwa M, MacDonald CC, Berget SM: Are vertebrate exons scanned during splice site selection? Nature 360: 277–280 (1992).

    Google Scholar 

  188. Norris SR, Meyer SE, Callis J: The intron of Arabidopsis thailiana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol Biol 21: 895–906 (1993).

    Google Scholar 

  189. Nussaume L, Harrison K, Klimyuk V, Martinessen R, Sundresan V, Jones JDG: Analysis of splice donor and acceptor site function in a transposable gene trap derived from the maize element Activator. Mol Gen Genet 249: 91–101 (1995).

    Google Scholar 

  190. Ochs RL, Stein TWJr, Tan EM: Coiled bodies in the nucleolus of breast cancer cells. J Cell Sci 107: 385–399 (1994).

    Google Scholar 

  191. Ohno M, Sakamoto H, Shimura Y: Preferential excision of the 5′ proximal intron from mRNA precursors with two introns as mediated by the cap structure. Proc Natl Acad Sci USA 84: 5187–5191 (1987).

    Google Scholar 

  192. Okagaki RJ, Sullivan TD, Schiefelbein JW, Nelson OE: Alternative 3′ splice acceptor sites modulate enzymic activity in derivative alleles of the maize bronzel-mutable 13 allele. Plant Cell 4: 1453–1462 (1992).

    Google Scholar 

  193. O'Keefe RT, Mayeda A, Sadowski CL, Krainer AR, Spector DL: Disruption of pre-mRNA splicing splicing in vivo results in reorganization of splicing factors. J Cell Biol 124: 249–260 (1994).

    Google Scholar 

  194. Orozco BM, McClung CR, Werneke JM, and Ogren WL: Molecular basis of the ribulose-1,5-bisphosphate carboxylase/oxygenase activase mutation in Arabidopsis thaliana is a guanine to adenine transition at the 5′-splice junction of intron 3. Plant Physiol 102: 227–232 (1993).

    Google Scholar 

  195. Oubridge C, Ito N, Evans PR, Teo CH, Nagai K: Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372: 432–438 (1994).

    Google Scholar 

  196. Oritz DF, Strommer JN: The Mul maize transposable element induces tissue-specific aberrant splicing and polyadenylation in two Adh mutants. Mol Cell Biol 10: 2090–2095 (1990).

    Google Scholar 

  197. Osteryoung KW, Sundberg H, Vierling E: Poly(A) tail length of a heat shock protein RNA is increased by severe heat stress, but intron splicing is unaffected. Mol Gen Genet 239: 323–333 (1993).

    Google Scholar 

  198. Palfi Z, Bach M, Solymosy F, Lührmann R: Purification of the major UsnRNPs from broad bean extracts and characterization of their protein consituents. Nucl Acids Res 17: 1445–1458 (1989).

    Google Scholar 

  199. Parker R, Guthrie C: A point mutation in the conserved hexanucleotide at a yeast 5′ splice junction uncouples recognition, cleavage and ligation. Cell 41: 107–118 (1985).

    Google Scholar 

  200. Parker R, Siliciano PG: Evidence for an essential non-Watson-Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron. Nature 361: 660–662 (1993).

    Google Scholar 

  201. Parker RA, Siliciano PG, Guthrie C: Recognition of the TACTAAC box during mRNA splicing in yeast involves basepairing to the U2-like snRNA. Cell 49: 229–239 (1987).

    Google Scholar 

  202. Pautot V, Brzezinski R, Tepfer M: Expression of a mouse metallothionein gene in transgenic plant tissue. Gene 77: 133–140 (1989).

    Google Scholar 

  203. Peletier M: Recherches cytologiques sur l'Aesculus hippocastanum L. Botaniste 27: 279–321 (1935).

    Google Scholar 

  204. Pereira A, Saedler H: Transpositional behavior of the maize En/Spm element in transgenic tobacco. EMBO J 8: 1315–1321 (1989).

    Google Scholar 

  205. Peterhans A, Datta SK, Datta K, Goodall GJ, Potrykus I, Paszkowski J: Recognition efficiency of Dicotyledoneae-specific promoter and RNA processing signals in rice. Mol Gen Genet 222: 361–368 (1990).

    Google Scholar 

  206. Plumpton M, McGarvey M, Beggs JD: A dominant negative mutation in the conserved RNA helicase motif ‘SAT’ causes splicng factor PRP2 to stall in spliceosomes. EMBO J 13: 879–887 (1994).

    Google Scholar 

  207. Potashkin J, Naik K, Wentz-Hunter K: U2AF homolog required for splicing in vivo. Science 262: 573–575 (1993).

    Google Scholar 

  208. Purugganan MD: Transposable elements as introns: evolutionary connections. Trends Ecol Evol 8: 239–243 (1993).

    Google Scholar 

  209. Puvion-Dutilleul F, Besse S, Chan EK, Tan EM, Puvion E: p80 coilin: a component of coiled bodies and interchromatin granule-associated zones. J Cell Sci 108: 1143–1153 (1995).

    Google Scholar 

  210. Query CC, Moore MJ, Sharp PA: Branch nucleophile selection in pre-mRNA splicing: Evidence for the bulged duplex model. Genes Devel. 8: 587–597 (1994).

    Google Scholar 

  211. Raska I, Ochs RL, Andrade LEC, Chan EKL, Burlingame R, Peebles C, Groul D, Tan EM: Association between the nucleolus and the coiled body. J Struct Biol 104: 120–127 (1990).

    Google Scholar 

  212. Raska I, Andrade LEC, Ochs RL, Chan EKL, Chang C-M, Roos G, Tan EM: Immunological and ultrastructural studies of the nuclear coiled body with auoimmune antibodies. Exp Cell Res. 195: 27–37 (1991).

    Google Scholar 

  213. Reddy ASN, Czernik AJ, Gynheung A, Pooviah BW: Cloning of the cDNA for U1 small nuclear ribonucleoprotein particle 70K protein from Arabidopsis thaliana. Biochim Biophys Acta 1171: 88–92 (1992).

    Google Scholar 

  214. Reed R, Maniatis T: The role of the mammalian branchpoint sequence in pre-mRNA splicing. Genes Devel 2: 1268–1276 (1988).

    Google Scholar 

  215. Risueño MC, Medina FJ: Ultrastructural, cytochemical and autoradiographic characterization of coiled bodies in the plant cell nucleus. Biol Cell 44: 229–238 (1982).

    Google Scholar 

  216. Robberson BL, Cote GJ, Berget SM: Exon definition may facilitate splice site selection in RNAs with mutiple exons. Mol Cell Biol 10: 84–94 (1990).

    Google Scholar 

  217. Roesler KR, Shorrosh BS, Ohlrogge JB: Structure and expression of an Arabidopsis acetyl-coenzyme A carboxylase gene. Plant Physiol 105: 611–617 (1994).

    Google Scholar 

  218. Rosbash M, Singer RH: RNA travel: tracks from DNA to cytoplasm. Cell 75: 399–401 (1993).

    Google Scholar 

  219. Roscigno RF, Garcia-Blanco M: SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome. RNA 1: 692–706 (1995).

    Google Scholar 

  220. Roth MB: Spheres, coiled bodies and nuclear bodies. Curr Opin Cell Biol 7: 325–328 (1995).

    Google Scholar 

  221. Roth MB, Zahler AM, Stolk JA: A conserved family of nuclear phosphoproteins localized to sites of polymerase II transcription. J Cell Biol 115: 587–596 (1991).

    Google Scholar 

  222. Ruis BL, Kivens WJ, Siliciano PG: The interaction between the first and last intron nucleotides in the second step of pre-mRNA splicing is independent of other conserved intron nucleotides. Nucl Acids Res 22: 5190–5195 (1994).

    Google Scholar 

  223. Rundle SJ, Zielinski RE: Alterations in barley ribulose-1,5bisphosphate carboxylase/oxygenase activase gene expression during development and in response to illumination. J Biol Chem 266: 14802–14807 (1991).

    Google Scholar 

  224. Ruskin B, Green MR: An RNA processing activity that debranches RNA lariats. Science 229: 135–140 (1985).

    Google Scholar 

  225. Rymond BC, Rosbash M: Yeast pre-mRNA splicing. In: Jones EW, Pringle JR, Broach JR (eds) The Molecular and Cellular Biology of the Yeast Saccharomyces, pp. 143–194. Cold Spring Harbor Laboratory Press, Cold Spring Harbour, NY (1992).

    Google Scholar 

  226. van Santen VL, Spritz RA: Splicing of plant pre-mRNAs in animal systems and vice versa. Gene 56: 253–265 (1987).

    Google Scholar 

  227. Sato S, Willson C, Dickinson HG: Origin of nucleolus-like bodies found in the nucleoplasm and cytoplasm of Vicia faba meristematic cells. Biol Cell 64: 321–329 (1988).

    Google Scholar 

  228. Sawa H, Shimura Y: Requirement of protein factors and ATP for the dissasembly of the spliceosome after mRNA splicing reaction. Nucl Acids Res 19: 6819–6821 (1991).

    Google Scholar 

  229. Schalk HJ, Matzeit V, Schiller B, Schell J, Gronenborn B: Wheat dwarf virus, a geminivirus of graminaceous plants needs splicing for replication. EMBO J 8: 359–364 (1989).

    Google Scholar 

  230. Schwer B, Guthrie C: PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature 349: 494–499 (1991).

    Google Scholar 

  231. Schwer B, Guthrie C: A conformational rearrangement in the spliceosome is dependent on PRP16 and ATP hydrolysis. EMBO J. 11: 5033–5039 (1992).

    Google Scholar 

  232. Seraphin B: Sm and Sm-like proteins belong to a large family: identification of proteins of U6 as well as the U1, U2 U4 and U5snRNPs. EMBO J 14: 2089–2098 (1995).

    Google Scholar 

  233. Seraphin B, Kretzner L, Rosbash M: A U1snRNA:pre-mRNA basepairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5′ cleavage site. EMBO J 7: 2533–2538 (1988).

    Google Scholar 

  234. Seraphin B, Rosbash M: Identification of functional U1snRNA pre-mRNA complexes committed to spliceosome assembly and splicing. Cell 59: 349–58 (1989).

    Google Scholar 

  235. Sharp PA: Split genes and RNA splicing. Cell 77: 805–815 (1994).

    Google Scholar 

  236. Shaw PJ, Jordan EG: The nuceolus. Annu Rev Cell Devel Biol 11: 93–121 (1995).

    Google Scholar 

  237. Sheen J: Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell 3: 225–245 (1991).

    Google Scholar 

  238. Simpson CG, Brown JWS: Efficient splicing of an AU-rich antisense intron sequence. Plant Mol Biol 21: 205–211 (1993).

    Google Scholar 

  239. Simpson CG, Leader DJ, Brown JWS: In: Croy RRD (ed) Plant Molecular Biology Labfax, pp. 183–251. BIOS Scientific Publishers, Oxford (1993).

    Google Scholar 

  240. Simpson CG, Simpson GG, Clark G, Leader DJ, Vaux P, Waugh R, Brown JWS: Splicing of plant pre-mTNAs. Proc Royal Soc Edinburgh 99b: 31–50 (1992).

    Google Scholar 

  241. Simpson CG, Clark G, Davidson D, Smith P, Brown JWS: Mutation of putative branchpoint consensus sequences in plant introns reduces splicing efficiency. Plant J 9: 381–389 (1996).

    Google Scholar 

  242. Simpson GG, Vaux P, Clark G, Waugh R, Beggs JD, Brown JWS: Evolutionary conservation of the spliceosomal protein, U2b″. Nucl Acids Res 19: 5213–5217 (1991).

    Google Scholar 

  243. Simpson GG, Clark G, Rothnie H, Boelens W, Van Venrooij W, Brown JWS: Molecular characterisation of the spliceosomal proteins U1A and U2B″ from higher plants. EMBO J 14: 4540–4550 (1995).

    Google Scholar 

  244. Singh R, Valcarcel J, Green MR: Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268: 1173–1176 (1995).

    Google Scholar 

  245. Sinibaldi RM, Mettler IJ: Intron splicing and intron-mediated enhanced gene expression in monocots. Progr Nucl Acid Res Mol Biol 42: 229–257 (1992).

    Google Scholar 

  246. Smith CWJ, Patton JG, Nadal-Ginard B: Alternative splicing in the control of gene expression. Annu Rev Genet 23: 527–577 (1989).

    Google Scholar 

  247. Smith CWJ, Porro EB, Patton JG, Nadal-Ginard B: Scanning from an independently specified branchpoint defines the 3′ splice site of mammalian introns. Nature 342: 243–247 (1989).

    Google Scholar 

  248. Smith CWJ, Chu TT, Nadal-Ginard B: Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns. Mol Cell Biol 13: 4939–4952 (1993).

    Google Scholar 

  249. Smith KP, Carter KC, Johnson CV, Lawrence JB: U2 and U1 snRNA gene loci associate with coiled bodies. J Cell Biochem 59: 473–485 (1995).

    Google Scholar 

  250. Sontheimer EJ, Steitz JA: The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science 262: 1989–1996 (1993).

    Google Scholar 

  251. Solnick D, Lee SI: Amount of RNA secondary structure required to induce an alternative splice. Mol Cell Biol 7: 3194–3198 (1987).

    Google Scholar 

  252. Solymosy F, Pollák T: Uridylate-rich small nuclear RNAs (UsnRNAs), their genes, pseudogenes, and UsnRNPs in plants: structure and function. A comparative approach. Crit Rev Plant Sci 12: 275–369 (1993).

    Google Scholar 

  253. Spector DL: Macromolecular domains within the cell nucleus. Annu Rev Cell Biol 9: 265–315 (1993).

    Google Scholar 

  254. Staknis D, Reed R: SR proteins promote the first specific recognition of Pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol Cell Biol 14: 7670–7682 (1994).

    Google Scholar 

  255. Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB: Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA 88: 8816–8820 (1991).

    Google Scholar 

  256. Sun JS, Manley JL: A novel U2–U6 snRNA structure is necessary for mammalian mRNA splicing. Genes Devel 9: 843–854 (1995).

    Google Scholar 

  257. Sun Q, Mayeda A, Hampson RK, Krainer AR, Rottman FM: General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Devel 7: 2598–2608 (1993).

    Google Scholar 

  258. Swanson MS: Functions of nuclear pre-mRNA/mRNA binding proteins. In: Lamond A (ed) Pre-mRNA Processing, pp. 17–29. R.G. Landes Publishers, Georgetown, TX (1995).

    Google Scholar 

  259. Takahashi T, Naito S, Komeda Y: Isolation and analysis of the expression of two genes for the 81 Kd heat-shock proteins from Arabidopsis. Plant Physiol 99: 383 (1992).

    Google Scholar 

  260. Tamaoki M, Tsugawa H, Minami E, Kayano T, Yamamoto N, KanoMurakami Y, Matsuoka M: Alternative RNA products from a rice homeobox gene. Plant J 7: 927–938 (1995).

    Google Scholar 

  261. Tanaka A, Mita S, Ohta S, Kyozuka J, Schimamoto J, Nakamura K: Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucl Acids Res 18: 6767–6770 (1990).

    Google Scholar 

  262. Tantikanjana T, Nasrallah ME, Stein JC, Chen C-H, Nasrallah JB: An alternative transcript of the S locus glycoprotein gene in a class II pollen-recessive self-incompatibility haplotype of Brassica oleracea encodes a membrane-anchored protein. Plant Cell 5: 657–666 (1993).

    Google Scholar 

  263. Tarn W-Y, Steitz JA: SR proteins can compensate for the loss of U1 snRNP functions in vitro. Genes Devel 8: 2704–2717 (1994).

    Google Scholar 

  264. Tarn W-Y, Steitz JA: Modulation of 5′ splice site choice in pre-messenger RNA by two distinct steps. Proc Natl Acad Sci USA 92: 2504–2508 (1995).

    Google Scholar 

  265. Tarn W-Y, Steitz JA: A novel spliceosome containing U11, U12 and U5 snRNPs excises a minor class (AT-AC) intron in vitro. Cell 84: 801–811 (1996).

    Google Scholar 

  266. Thiessen H, Etzerodt M, Reuter R, Schneider C, Lottspeich F, Argos P, Lührmann R, Philipson L: Cloning of the human cDNA for the U1 RNA-associated 70K protein EMBO J 5: 3209–3217 (1986).

    Google Scholar 

  267. Tian M, Maniatis T: A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell 74: 105–114 (1993).

    Google Scholar 

  268. Turner BM, Franchi L: Identification of protein antigens associated with the nuclear matrix and with clusters of interchromating granules in both interphase and mitotic cells. J Cell Sci 87: 269–282 (1987).

    Google Scholar 

  269. Tsai DE, Harper DS, Keene JD: U1-snRNP-A protein selects a ten nucleotide consensus sequence from a degenerate RNA pool presented in various structural contexts. Nucl Acids Res 19: 4931–4936 (1991).

    Google Scholar 

  270. Tycowski KT, Shu M-D, Steitz JA: A mammalian gene with introns instead of exons generating stable RNA products. Nature 379: 464–466 (1996).

    Google Scholar 

  271. Umen JG, Guthrie C: The second catalytic step of pre-mRNA splicing. RNA 1: 869–885 (1995).

    Google Scholar 

  272. Valcarel J, Singh R, Green MR: Mechanisms of regulated pre-mRNA splicing. In: Lamond A (ed) Pre-mRNA Processing, pp. 97–112. R.G. Landes Publishers, Georgetown, TX (1995).

    Google Scholar 

  273. Varagona MJ, Purugganan M, Wessler SR: Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 4: 811–820 (1992).

    Google Scholar 

  274. Vasil V, Clancy M, Feri RJ, Vasil IK: Increased gene expresion by the first intron of maize shrunken-1 locus in grass species. Plant Physiol 91: 1575–1579 (1989).

    Google Scholar 

  275. Waigmann E, Barta A: Processing of chimeric introns in dicot plants: evidence for a close cooperation between 5′ and 3′ splice sites. Nucl Acids Res 20: 75–81 (1992).

    Google Scholar 

  276. Wang Z-Y, Zheng F-Q, Shen G-Z, Gao J-P, Snustad P, LI M-G, Zhang J-L, Hong M-M: The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J 7: 613–622 (1995).

    Google Scholar 

  277. Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L: Fluorescent labelling of nascent RNA reveals transcription by RNA polymerase II scattered throughout the nucleus. J Cell Biol 122: 283–293 (1993).

    Google Scholar 

  278. Wassarmann DA, Steitz JA: Interactions of small nuclear RNAs with precursor messenger RNA during in vitro splicing. Science 257: 1918–1925 (1992).

    Google Scholar 

  279. Weil CF, Wessler SR: The effects of plant transposable element insertion on transcription initiation and RNA processing. Annu Rev Plant Physiol Plant Mol Biol 41: 527–552 (1990).

    Google Scholar 

  280. Weiner AM: mRNA splicing and autocatalytic introns: distant cousins or the products of chemical determinism? Cell 72: 161–164 (1993).

    Google Scholar 

  281. Werneke JM, Chatfield JM, Ogren WL: Alternative mRNA slicing generates the two ribulosebisphosphate carboxylase/oxygenase activase polypeptides in spinach and Arabidopsis. Plant Cell 1: 815–825 (1989).

    Google Scholar 

  282. Wells SE, Neville M, Haynes M, Wang J, Igel H, Ares M: CUSI, a suppressor of cold sensitive U2 snRNA mutations, is a novel yeast splicing factor homologous to human SAP 145. Genes Devel 10: 220–232 (1996).

    Google Scholar 

  283. Wessler S: The maize transposable Ds1 element is alternatively spliced from exon sequences. Mol Cell Biol 11: 6192–6196 (1991).

    Google Scholar 

  284. White O, Soderlund C, Shanmugan P, Fields C: Information contents and dinucleotide compositions of plant intron sequences vary with evolutionary origin. Plant Mol Biol 19: 1057–1064 (1992).

    Google Scholar 

  285. Wiebauer K, Herrero J-J, Filipowicz W: Nuclear pre-mRNA processing in plants: distinct modes of 3′-splice site selection in plants and animals. Mol Cell Biol 8: 2042–2051 (1988).

    Google Scholar 

  286. Williams LM, Jordan EG, Barlow PW: The ultrastructure of nuclear bodies in interphase plant cell nuclei. Protoplasma 118: 99–103 (1983).

    Google Scholar 

  287. Williams LM, Charest PM, Fitzgerald GJ, Lafontaine J-G: A comparison of nuclease-gold and protease-gold complex labeling over the nucleolus and nuclear bodies of Pisum sativum root tip cells. Biol Cell 54: 65–72 (1985).

    Google Scholar 

  288. Winter J, Wright R, Duck N, Gasser C, Fraley R, Shah D: The inhibition of petunia hsp 70 mRNA processing during CdCl2 stress. Mol Gen Genet 211: 315 (1988).

    Google Scholar 

  289. Wise JA: Guides to the heart of the spliceosome. Science 262: 1978–1979 (1993).

    Google Scholar 

  290. Wu JA, Manley J: Mammalian pre-mRNA branch site selection by U2snRNP involves base-pairing. Genes Devel 3: 1553–1561 (1989).

    Google Scholar 

  291. Wu JV, Maniatis T: Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75: 1061–1070 (1993).

    Google Scholar 

  292. Wuarin J, Schibler U: Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol Cell Biol 14: 4855–4871 (1994).

    Google Scholar 

  293. Wyatt JR, Sontheimer EJ, Steitz JA: Site-specific crosslinking of mammalian U5 snRNP to the 5′ splice site before the first step of pre-mRNA splicing. Genes Devel 6: 2542–2553 (1992).

    Google Scholar 

  294. Xing Y, Johnson CV, Moen PT, Mcneill JA, Lawrence JB: Non random gene organization: structural rearrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J Cell Biol 131: 1635–1647 (1995).

    Google Scholar 

  295. Xue J, Rask L: The unusual 5′ splicing border GC is used in myrosinase genes of the Brassicaceae. Plant Mol Biol 29: 167–171 (1995).

    Google Scholar 

  296. Yoshimatsu T, Nagawa F: Control of gene expression by artificial introns in Saccharomyces cerevisiae. Science 244: 1346–1348 (1989).

    Google Scholar 

  297. Yost HJ, Lindquist S: RNA splicing is interupted by heat shock protein synthesis. Cell 45: 185–193 (1986).

    Google Scholar 

  298. Zachar Z, Kramer J, Mims IP, Bingham PM: Evidence for channeled diffusion of pre-mRNAs during nuclear RNA transport in metazoans. J Cell Biol 121: 729–742 (1993).

    Google Scholar 

  299. Zahler AM, Stolk JA, Lane WS, Roth MB: SR proteins: a conserved family of pre-mRNA splicing factors. Genes Devel 6: 837–847 (1992).

    Google Scholar 

  300. Zahler AM, Neugebauer KM, Lane WS, Roth MB: Distinct functions of SR proteins in alternative splicing. Science 260: 219–222 (1993).

    Google Scholar 

  301. Zamore PD, Green MR: Biochemical characterization of U2 snRNP auxillary factor: an essential pre-mRNA splicing factor with a novel intranuclear distribution. EMBO J 10: 207–214 (1991).

    Google Scholar 

  302. Zamore PD, Patton JG, Green MR: Cloning and domain structure of the mammalian splicing factor U2AF. Nature 355: 609–614 (1992).

    Google Scholar 

  303. Zhang M, Zamore PD, Carmo-Fonseca M, Lamond AI, Green MR: Cloning and intracellular localization of the U2 small nuclear ribonucleoprotein auxillary factor small subunit. Proc Natl Acad Sci USA 89: 8769–8773 (1992).

    Google Scholar 

  304. Zhang G, Taneja K, Singer RH, Green MR: Localization of pre-mRNA splicing in mammalian nuclei. Nature 372: 809–812 (1994).

    Google Scholar 

  305. Zhuang Y, Weiner AM: A compensatory base change in human U2snRNA can suppress a branch site mutation. Genes Devel 3: 1545–1552 (1989).

    Google Scholar 

  306. Zhuang Y, Leung H, Weiner AM: The 5′ splice site of simian virus 40 large T antigen can be improved by increasing the base complementarity to U1 snRNA. Mol Cell Biol 7: 3018–3020 (1987).

    Google Scholar 

  307. Zhuang T, Goldstein AM, Weiner AM: UACUAAC is the preferred branchsite for mammalian mRNA splicing. Proc Natl Acad Sci USA 86: 2752–2756 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, G.G., Filipowicz, W. Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol Biol 32, 1–41 (1996). https://doi.org/10.1007/BF00039375

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039375

Key words

Navigation