Skip to main content
Log in

Effects of detrending and rescaling on correspondence analysis: solution stability and accuracy

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Detrending and non-linear axis rescaling potentially improve the accuracy of gradient recovery in correspondence analyses but also reduce the stability or consistency of solutions. Variation among bootstrapped ordination solutions was compared across methods in analyses of both field and simulated data. Solution accuracy, measured with mean squared errors from Procrustes analysis, was compared using simulated data with known structure.

Standard detrending-by-segments combined with non-linear rescaling entailed some cost in solution stability, but could improve the accuracy of solutions for long gradients. Without non-linear rescaling these solutions were usually less stable and less accurate. Although detrending-by-polynomials might be preferable on other grounds, it did not produce more accurate or stable solutions than detrending-by-segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CA =:

correspondence analysis

DCA =:

detrended correspondence analysis

MSE =:

Procrustes mean squared error statistic

SD =:

standard deviation units of species turnover

SRV =:

scaled variance in species ranks

References

  • BradfieldG. E. & KenkelN. C. 1987. Nonlinear ordination using flexible shortest path adjustment of ecological distances. Ecology 68: 750–753.

    Google Scholar 

  • FaithD. P., MinchinP. R. & BelbinL. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69: 57–68.

    Google Scholar 

  • FashamM. R. J. 1977. A comparison of nonmetric multidimensional scaling, principal components and reciprocal averaging for the ordination of simulated coenoclines, and coenoplanes. Ecology 58: 551–561.

    Google Scholar 

  • GauchJr.H. G. 1982. Multivariate analysis in community ecology. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • GauchJr.H. G. & WhittakerR. H. 1972. Coenocline simulation. Ecology 53: 446–451.

    Google Scholar 

  • GauchJr.H. G. & WhittakerR. H. 1976. Simulation of community patterns. Vegetatio 33: 13–16.

    Google Scholar 

  • GreenacreM. J. 1984. Theory and applications of correspondence analysis. Academic Press, London.

    Google Scholar 

  • HillM. O. 1974. Correspondence analysis: a neglected multivariate method. Appl. Statist. 23: 340–354.

    Google Scholar 

  • HillM. O. 1979. DECORANA — a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Section of Ecology and Systematics, Cornell University, Ithaca, New York.

    Google Scholar 

  • HillM. O. & GauehJr.H. G. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Google Scholar 

  • IhmP. & vanGroenewoudH. 1984. Correspondence analysis and gaussian ordination. In: ChambersJ. M., GordeschJ., KlasA., LebartL. & SintP. P. (eds), Compstat Lectures 3, Lectures in computational statistics. Physica-Verlag, Vienna.

    Google Scholar 

  • JongmanR. H. G. terBraakC. J. F., & vanTongerenO. F. R. 1987. Data analysis in community and landscape ecology. Pudoc, Wageningen.

    Google Scholar 

  • KenkelN. C. & OrlóciL. 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67: 919–928.

    Google Scholar 

  • KnoxR. G. & PeetR. K. 1989. Bootstrapped ordination: a method for estimating sampling effects in indirect gradinet analysis. Vegetatio 80: 153–165.

    Google Scholar 

  • McLeod, D. E. 1988. Vegetation patterns, floristics, and environmental relationships in the Black and Craggy Mountains of North Carolina. Ph.D. Diss., University of North Carolina, Chapel Hill, North Carolina.

  • MinchinP. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89–107.

    Google Scholar 

  • OksanenJ. 1988. A note on the occasional instability of detrending in correspondence analysis. Vegetatio 74: 29–32.

    Google Scholar 

  • PeetR. K. & ChristensenN. L. 1980. Hardwood forests of the North Carolina piedmont. Veröff. Geobot. Inst. Rübel 69: 14–39.

    Google Scholar 

  • PeetR. K., KnoxR. G., CaseJ. S. & AllenR. 1988. Putting things in order: the advantages of detrended correspondence analysis. Amer. Nat. 131: 924–934.

    Google Scholar 

  • PielouE. C. 1984. The interpretation of ecological data. Wiley, New York.

    Google Scholar 

  • SchönemanP. H. & CarrollR. M. 1970. Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35: 245–255.

    Google Scholar 

  • terBraakC. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • terBraakC. J. F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.

    Google Scholar 

  • terBraakC. J. F. 1988a. CANOCO — a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). Report LWA-88–02. Agricultural Mathematics Group, Wageningen.

    Google Scholar 

  • terBraakC. J. F. 1988b. CANOCO — and extension of DECORANA to analyze species-environment relationships. Vegetatio 75: 159–160.

    Google Scholar 

  • terBraakC. J. F. & PrenticeI. C. 1988. A theory of gradient analysis. Adv. Ecol. Res. 18: 271–317.

    Google Scholar 

  • WartenbergD., FersonS. & RohlfF. J. 1987. Putting things in order: A critique of detrended correspondence analysis. Amer. Nat. 129: 434–448.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knox, R.G. Effects of detrending and rescaling on correspondence analysis: solution stability and accuracy. Vegetatio 83, 129–136 (1989). https://doi.org/10.1007/BF00031685

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00031685

Keywords

Navigation