Skip to main content
Log in

Micro-mechanical modelling of mode III fatigue crack growth in rotor steels

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A study has been made of fatigue crack propagation in mode III (anti-plane shear) for A469 and A470 commercial rotor steels (tensile strength 621 and 764 MN/m2 respectively) using torsionally-loaded circumferentially-notched cylindrical specimens. For crack growth under both small-and large-scale yielding conditions, radial mode III crack propagation rates are observed to be similar in both steels and to be uniquely related to the plastic intensity range 163-1 per cycle, provided friction, abrasion and interlocking between sliding crack faces is minimized by the application of a small tensile mean load. Over the range studied (i.e., ≈10-6 to 10-1 mm/cycle), mode III growth rates (dc/dN)III are found to be independent of load ratio (for R=−1.0 and −0.5) and to be a power law function of 163-1 or the mode III cyclic crack tip displacement. When compared to mode I crack growth at equivalent cyclic crack tip displacements, however, crack propagation rates in mode III are seen to be two orders of magnitude smaller than in mode I. Based on fractographic evidence of elongated voids, parallel to the crack front, at the tip of the fatigue crack, several models for mode III crack growth are proposed utilizing the concept that mode III crack advance occurs by the initiation and coalescence of voids formed at inclusions directly ahead of the crack tip. By considering the linkage of these voids to take place by mode II shear parallel to the main crack front, expressions for the mode III crack propagation rate are developed based either on considerations of the local mode II crack tip displacementsor the mode II accumulated crack tip strain (computed from the Coffin-Manson damage relationship). Whereas both types of models predict mode III growth rates to be a small fraction of the cyclic crack tip displacements per cycle, the damage accumulation model in particular is found to provide excellent agreement with experimentally measured growth rates in the present rotor steels.

Résumé

On a procédé à une étude de la propagation en mode III (cisaillement antiplanaire) des fissures de fatigue dans les aciers commerciaux pour rotors des nuances A 469 (UTS 621 MN/m2) et A 47 à (UTS 764 MN/m2) à l'aide d'éprouvettes cylindriques à entaille circonférentielle soumises à tension.

Pour des croissances de fissures demeurant sous les conditions d'écoulement plastique à petite ou à grande échelle, on observe que les vitesses de propagation d'une fissure radiale en mode III sont similaires dans les deux aciers. Si on minimise les frottements, l'abrasion et les couplages mécaniques entre les faces de la fissure en appliquant une légère contrainte de traction, on observe également que ces vitesses sont en seule relation avec l'étendue de la déformation plastique ΔΓ III par cycle. Dans la gamme étudiée (F de 10-6 à 10-1 mm/cycle) on trouve que la vitesse de croissance de la fissure en mode III est indépendante de R (pour R=−1 et −0,5) et est une fonction parabolique de ΔΓ III ou du déplacement d'extrémité de la fissure. Toutefois, si on compare les vitesses de croissance en mode III à celles obtenues en mode I sous les mêmes déplacements d'extrémités de fissure, on constate que les premières sont inférieures aux secondes de deux ordres de grandeur. On propose divers modèles pour la croissance de fissure en mode III, en se basant sur l'observation fractographique de la présence de lacunes allongées parallèles sur front de fissuration.

Ces modèles recourent au concept de préfissuration par coalescences des lacunes formées sur des inclusions en amont de la fissure. En considérant que ces lacunes se réunissent par un cisaillement de mode II parallèle au front de fissuration principale, on a développé des expressions pour la vitesse de propagation suivant le mode III, qui reposent soit sur les déplacements locaux de l'extrémité de la fissure suivant un mode II, soit sur la déformation de mode II accumulée à l'extrémité de la fissure et calculée par la relation de dommages cumulés de Coffin-Manson.

Si les deux types de modèle prédisent que les taux de croissance selon le mode II ne sont qu'une faible fraction des déplacements par cycle, le modèle recourant au concept de dommages cummulés se montre quant à lui en excellent accord avec les vitesses de propagation mesurées expérimentalement sur lesdits aciers pour rotors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Quay and R.J. Placek, in Analysis and Control of Subsynchronous Resonance, IEEE Power Engineering Society, New York, N.Y. (1976) 12.

    Google Scholar 

  2. M.C. Jackson, S.D. Umans, R.D. Dunlop,S.H. Horowitz and A.C. Parikh, IEEE Transactions for Power Apparatus and Systems 98 (1979) 2299.

    Google Scholar 

  3. R.D. Dunlop, S.H. Horowitz, A.C. Parikh and M.C. Jackson, IEEE Transactions for Power Apparatus and System 98 (1979) 2008.

    Google Scholar 

  4. D.N. Walker, C.E.J. Bowler, R.L. Jackson and D.A. Hodges, IEEE Transactions for Power Apparatus and System 94 (1975) 1878.

    Google Scholar 

  5. R.O. Ritchie, F.A. McClintock, H. Nayeb-Hashemi and M.A. Ritter, Metallurgical Transactions A 13A (1982) 101.

    Google Scholar 

  6. H. Nayeb-Hashemi, “Prediciting Torsional Fatigue Crack Growth (Mode III) in Turbo-Generator Shafts,” Ph.D. Thesis, Department of Mechanical Engineering, M.I.T., Cambridge, MA 02139, April 1982.

  7. F.A. McClintock and R.O. Ritchie, in Mechanics of Fatigue, T. Mura ed., AMD-vol. 47, American Society of Mechanical Engineers, New York (1981) 1.

    Google Scholar 

  8. H. Nayeb-Hashemi, F.A. McClintock and R.O. Ritchie, Metallurgical Transactions A 13A (1982) 2197.

    Google Scholar 

  9. E.K. Tschegg, R.O. Ritchie and F.A. McClintock, International Journal of Fatigue 5 (1983) 29.

    Article  Google Scholar 

  10. N.J. Hurd and P.E. Irving, Design of Fatigue and Fracture Resistant Structures, STP 761, American Society for Testing and Materials, Philadelphia (1982) 212.

    Google Scholar 

  11. R.P. Wright and R.A. Queeney, International Journal of Fatigue 4 (1982) 27.

    Article  Google Scholar 

  12. M.A. Ritter and R.O. Richie, Fatigue of Engineering Materials and Structures 5 (1982) 91.

    Google Scholar 

  13. H. Tada, P.C. Paris and G.R. Irwin, in The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, PA (1973).

    Google Scholar 

  14. J.B. Walsh and A.C. Mackensie, Journal of the Mechanics and Physics of Solids 7 (1959) 247.

    Article  Google Scholar 

  15. J.A. Hult and F.A. McClintock, in Proceedings Ninth International Congress for Applied Mechanics, Brussels 8 (1956) 51.

  16. N.J. Hurd and P.E. Irving, in Fracture and Fatigue, J.C. Radon ed., Pergamon Press, New York (1980) 239.

    Google Scholar 

  17. V.A. Tipnis and N.H. Cook, Journal of Basic Engineering, Transactions ASME, Series D, 89 (1967) 533.

    Google Scholar 

  18. J.R. Rice, in Fracture: An Advanced Treatise, H. Leibowitz, ed., 2, Academic Press, N.Y. (1968) 191.

    Google Scholar 

  19. F.A. McClintock, in Proceedings International Conference on Fatigue of Metals, Institution of Mechanical Engineers, London (1956) 538.

  20. J.A.H. Hult, Transactions Royal Institute of Technology, Stockholm, Sweden, No. 119 (1958).

  21. I. Kayan, Bulletin, Technical University Istanbul 14 (1961) 45.

    Google Scholar 

  22. F.A. McClintock, in Fracture of Solids, D.C. Drucker and J.J. Gilman, eds., TMS-AIME Conference Series 20, Interscience (1963) 65.

  23. L.F. Coffin and J.F. Travernelli, Transactions Metallurgical Society AIME 215 (1959) 794.

    Google Scholar 

  24. R. Placek, R. Williams, O. Klufas and S. Adams, “EPRI-GE Workshop on Torsional Fatigue Strength of Large Turbine-Generator Shafts,” G.E. Technical Report (Contract RP1531), General Electric Company, Schenectady, N.Y., Sept. 1980.

    Google Scholar 

  25. R.W. Lardner, Philosophical Magazine 17 (1968) 71.

    Google Scholar 

  26. J. Weertman, International Journal of Fracture Mechanics 2 (1966) 460–467.

    Article  Google Scholar 

  27. A.J. McEvily, in Proceedings U.S. Air Force Conference on Fatigue and Fracture of Aircraft Structures and Materials, AFFDLTR-70-1144 (Sept. 1970) 451.

  28. F.A. McClintock and E.K. Tschegg, “On the Plastic Zone in Circumferentially Grooved Shafts at High Torques International Journal of Fracture (1983) submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayeb-Hashemi, H., Mcclintock, F.A. & Ritchie, R.O. Micro-mechanical modelling of mode III fatigue crack growth in rotor steels. Int J Fract 23, 163–185 (1983). https://doi.org/10.1007/BF00028821

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00028821

Keywords

Navigation