Skip to main content
Log in

Spatial heterogeneity as a multiscale characteristic of zooplankton community

  • Invited Lecture
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Zooplankton spatial heterogeneity has profound effects on understanding and modelling of zooplankton population dynamics and interactions with other planktonic compartments, and consequently, on the structure and function of planktonic ecosystems. On the one hand, zooplankton heterogeneity at spatial and temporal scales of ecological interest is an important focus of aquatic ecology research because of its implications in models of productivity, herbivory, nutrient cycling and trophic interactions in planktonic ecosystems. On the other hand, estimating zooplankton spatial variation at the scale of an ecosystem, is a powerful tool to achieve accurate sampling design. This review concentrates on the spatial heterogeneity of marine and freshwater zooplankton with respect to scale. First to be examined are the concept of spatial heterogeneity, the sampling and statistical methods used to estimate zooplankton heterogeneity, and the scales at which marine and freshwater zooplankton heterogeneity occurs. Then, the most important abiotic and biotic processes driving zooplankton heterogeneity over a range of spatial scales are presented and illustrated by studies conducted over large and fine scales in both oceans and lakes. Coupling between abiotic and biotic processes is finally discussed in the context of the ‘multiple driving forces hypothesis’.

Studies of zooplankton spatial heterogeneity refer both to the quantification of the degree of heterogeneity (‘measured heterogeneity’) and to the estimation of the heterogeneity resulting from the interactions between the organisms and their environment (‘functional heterogeneity’) (Kolasa & Rollo, 1991). To resolve the problem of measuring zooplankton patchiness on a wide range of spatial scales, advanced technologies (acoustic devices, the Optical Plankton Counter (OPC), and video systems) have been developed and tested in marine and freshwater ecosystems. A comparison of their potential applications and limitations is presented. Furthermore, many statistical tools have been developed to estimate the degree of ‘measured heterogeneity’; the three types most commonly used are indices of spatial aggregation, variance: mean ratio, and spatial analysis methods. The variance partitioning method proposed by Borcard et al. (1992) is presented as a promising tool to assess zooplankton ‘functional heterogeneity’.

Nested patchiness is a common feature of zooplankton communities and spatial heterogeneity occurs on a hierarchical continuum of scales in both marine and freshwater environments. Zooplankton patchiness is the product of many physical processes interacting with many biological processes. In marine systems, patterns of zooplankton patchiness at mega- to macro-scales are mostly linked to large advective vectorial processes whereas at coarse-, fine- and micro-scales, physical turbulence and migratory, reproductive and swarm behaviors act together to structure zooplankton distribution patterns. In freshwater environments, physical advective forces related to currents of various energy levels, and vertical stratification of lake interact with biological processes, especially with vertical migration, to structure zooplankton community over large to fine- and micro-scales. Henceforth, the zooplankton community must be perceived as a spatially well-structured and dynamic system that requires a combination of both abiotic and biotic explanatory factors for a better comprehension and more realistic and reliable predictions of its ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alldredge, A. L., 1982. Aggregation of spawning appendicularians in surface windrows. Bull. mar. Sci. 32: 250–254.

    Google Scholar 

  • Allen, T. F. H. & T. B. Starr, 1982. Hierarchy — perspectives for ecological complexity. Univ. Chicago Press, Chicago.

    Google Scholar 

  • Allen, T. F. H. & T. W. Hoekstra, 1991. Role of heterogeneity in scaling of ecological systems under analysis. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag, New York. 3: 47–68.

    Google Scholar 

  • Amanieu, M., P. Legendre, M. Trousselier & G. F. Frisoni, 1989. Le programme Ecothau: Théorie écologique et base de la modélisation. Oceanolog. Acta 12: 189–199.

    Google Scholar 

  • Anderson, R. M., D. M. Gordon, M. J. Crawley & M. P. Hassell, 1982. Variability in the abundance of animal and plant species. Nature (Lond.) 296: 245–248.

    Google Scholar 

  • Arditi, R., N. Perrin & H. Saiah, 1991. Functional responses and heterogeneities: an experimental test with cladocerans. Oikos 60: 69–75.

    Google Scholar 

  • Barry, J. P. & P. K. Dayton. 1991. Physical heterogeneity and the organization of marine communities. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag, New York. 14: 270–320.

    Google Scholar 

  • Bergstrom, B. I., A. Gustavsson & J. O. Stromberg, 1992. Determination of abundance of gelatinous plankton with a remotely operated vehicle (ROV). Arch. Hydrobiol. Beih. Ergebn. Limnol. 36: 59–65.

    Google Scholar 

  • Berzins, B., 1958. Ein Planktologisches Querprofil. Rep. Ist. Freshwat. Res. Drottingholm 39: 5–22.

    Google Scholar 

  • Birge, E. A., 1897. Plankton studies on Lake Mendota. II. The crustacea of the plankton in July 1894–December 1896. Trans. Wis. Acad. Sci. Arts Lett. 11: 274–448.

    Google Scholar 

  • Bollens, S. M. & B. W. Frost, 1989. Zooplanktivorous fish and variable diel vertical mifration in the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 34: 1072–1083.

    Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Google Scholar 

  • Borcard, D. & P. Legendre, 1993. Environmental control and spatial structure in ecological communities, with an example on Oribatid mites (Acari, Oribatei). J. Envir. Stat. 1: 55–76.

    Google Scholar 

  • Buskey, E. J., 1984. Swimming pattern as an indicator of the roles of copepod sensory systems in the recognition of food. Mar. Biol. 79: 165–175.

    Google Scholar 

  • Butorina, L. G., 1986. On the problem of aggregations of plankton crustaceans Polyphemus pediculus (L.). Cladocera. Arch. Hydrobiol. 105: 355–386.

    Google Scholar 

  • Byron, E. R., P. T. Whitman & C. R. Goldman, 1983. Observation on copepod swarms in Lake Tahoe. Limnol. Oceanogr. 28: 378–382.

    Google Scholar 

  • Carpenter, S. R., 1988. Complex interactions in lake communities. Springer-Verlag. New York, 283 pp.

    Google Scholar 

  • Cassie, R. M., 1962. Frequency distribution models in the ecology of plankton and other organisms. J. anim. Ecol. 31: 65–92.

    Google Scholar 

  • Cassie, R. M., 1963. Microdistribution of plankton. Oceanogr. Mar. Biol. annu. Rev. 1: 223–252.

    Google Scholar 

  • Clutter, R. I., 1969. The microdistribution and social behavior of some pelagic mysid shrimps. J. exp. mar. Biol. Ecol. 3: 125–155.

    Google Scholar 

  • Colebrook, J. M., 1960a. Plankton and water movements in Lake Windermere. J. anim. Ecol. 29: 217–240.

    Google Scholar 

  • Colebrook, J. M., 1960b. Some observations of zooplankton swarms in Windermere. J. anim. Ecol. 29: 241–242.

    Google Scholar 

  • Cooked, R. A., L. D. B. Trehune, J. S. Ford & W. H. Bell, 1970. An opto-electronic plankton sizer. Fish. Res. Bd Can. Tech. Rep. No 172, 40 pp.

  • Crawford, R. E., C. Hudon & D. G. Parsons. 1992. An acoustic study of shrimp (Pandalus montagui) distribution near Resolution Island (eastern Hudson Strait). Can. J. Fish. aquat. Sci. 49: 842–856.

    Google Scholar 

  • Cushing, D. H. & D. S. Tungate, 1963. Studies on a Calanus patch. I. The identification of a Calanus patch. J. mar. biol. Ass. U.K. 43: 327–337.

    Google Scholar 

  • Davis, C. C., 1969. Seasonal distribution, constitution and abundance of zooplankton in Lake Erie. J. Fish. Res. Bd Can. 26: 2459–2476.

    Google Scholar 

  • Davis, C. S., G. R. Flierl, P. H. Wiebe & P. J. S. Franks, 1991. Micropatchiness turbulence and recruitment in plankton. J. mar. Res. 49: 109–152.

    Google Scholar 

  • De Nie, H. W., H. J. Bromley & J. Vijverberg, 1980. Distribution patterns of zooplankton in Tjeukemeer, The Netherlands. J. Plankton Res. 2: 317–334.

    Google Scholar 

  • Downing, J. A., 1986. Spatial heterogeneity: evolved behaviour or mathematical artifact. Nature (Lond.) 323: 255–257.

    Google Scholar 

  • Downing, J. A., M. Perusse & Y. Frenette, 1987. Effect of inter-replicate variance on zooplankton sampling design and data analysis. Limnol. Oceanogr. 32: 673–680.

    Google Scholar 

  • Downing, J. A., 1991. Biological heterogeneity in aquatic ecosystems. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag. New York: 9: 160–180.

    Google Scholar 

  • Dumont, H. J., 1967. A five day study of patchiness in Bosmina coregoni Baird in a shallow eutrophic lake. Mem. Inst. Ital. Idrobiol. Dott. Marco Marchii 22: 81–103.

    Google Scholar 

  • Dutilleul, P. & P. Legendre, 1993. Spatial heterogeneity against heteroscedasticity: an ecological paradigm versus a statistical concept. Oikos 66: 152–171.

    Google Scholar 

  • Evans, G. T., 1978. Biological effects of vertical-horizontal interactions. In Spatial pattern in plankton communities. J. H. Steele. Mar. Sci. (Plenum) 3: 157–179.

  • Fasham, M. J. R., 1978. The statistical and mathematical analysis of plankton patchiness. Oceanogr. Mar. Biol. Annu. Rev. 16: 43–79.

    Google Scholar 

  • Flagg, C. N. & S. L. Smith, 1989. On the use of the acoustic Doppler current profiler to measure zooplankton abundance. Deep-Sea Res. 36: 455–474.

    Google Scholar 

  • Frontier, S., 1973. Étude statistique de la dispersion du zooplankton. J. exp. mar. Biol. Ecol. 12: 229–262.

    Google Scholar 

  • Gannon, J. E., 1975. Horizontal distribution of crustacean zooplankton along a cross lake transect in Lake Michigan. J. Great Lakes Res. 1: 79–91.

    Google Scholar 

  • George, D. G. & R. W. Edwards, 1973. Daphnia distribution within Langmuir circulations. Limnol. Oceanogr. 18: 798–800.

    Google Scholar 

  • George, D. G., 1974. Dispersion patterns in the zooplankton populations of a eutrophic reservoir. J. Anim. Ecol. 43: 537–551.

    Google Scholar 

  • Gliwicz, Z. M. & A. Rykowska, 1992. Shore avoidance in zooplankton: A predator-induced behavior or predator-induced mortality. J. Plankton Res. 1992. 14: 1331–1342.

    Google Scholar 

  • Greene, C. H., 1983. Selective predation in freshwater zooplankton communities. Int. Revue ges. Hdyrobiol. 68: 297–315.

    Google Scholar 

  • Gujarati, D., 1978. Basic Econometrics. McGraw-Hill, New York.

    Google Scholar 

  • Haeckel, E., 1891. Plankton Studien. Jena Zeitschrift für Naturwissenschaft 25: 232–336.

    Google Scholar 

  • Hamner, W. M. & D. Schneider, 1986. Regularly spaced rows of medusae in the Bering Sea: role of Langmuir circulation. Limnol. Oceanogr. 31: 171–177.

    Google Scholar 

  • Hanazato, T., 1992. Direct and indirect effects of low-oxygen layers on lake zooplankton communities. Arch. Hydrobiol. Beih. Ergebn. Limnol. 35: 87–98.

    Google Scholar 

  • Hart, R. C., 1990. Zooplankton distribution in relation to turbidity and related environmental gradients in a large subtropical reservoir: patterns and implications. Freshwat. Biol. 24: 241–263.

    Google Scholar 

  • Haury, L. R., J. A. McGowan & P. H. Wiebe, 1978. Patterns and processes in the time-space scales of plankton distribution. In Steele, J. H. (ed.). Spatial pattern in plankton communities. Mar. Sci. (Plenum) 3: 277–327.

  • Hensen, V., 1884. Ueber die bestimmung der Planktons oder des im Meer Triebenden Materials an Pflanzen und Tieren. Bericht der Commission zur Wissenschaftlichen Untersuchungen des Deutschen Meere 5 (2).

  • Herman, A. W., 1988. Simultaneous measurement of zooplankton and light attenuance with a new optical plankton counter. Cont. Shelf Res. 8: 205–221.

    Google Scholar 

  • Herman, A. W., D. D. Sameoto, C. Shunnian, M. R. Mitchell, B. Petrie & N. Cochrane, 1991. Sources of zooplankton on the Nova Scotia Shelf and their aggregations within deep-shelf basins. Cont. Shelf. Res. 11: 211–238.

    Google Scholar 

  • Holliday, D. V., R. R. Pieper & G. S. Kleppel, 1989. Determination of zooplankton size and distribution with multifrequency acoustic technology. J. Cons. int. Explor. Mer 46: 135–146.

    Google Scholar 

  • Horne, E. P. W. & T. Platt, 1984. The dominant space and time scales of variability in the physical and biological fields on continental shelves. Rapp. Proces. Verb. Cons. int. Explor. Mer 183 9–19.

    Google Scholar 

  • Hurlbert, S. H., 1990. Spatial distribution of the montane unicorn. Oikos 58 257–271.

    Google Scholar 

  • Jillett, J. B. & J. R. Zeldis, 1985. Aerial observations of surface patchiness of a planktonic crustacean. Bull. mar. Sci. 37: 609–619.

    Google Scholar 

  • Johannsson, O. E., E. L. Mills & R. O'Gorman, 1991. Changes in the nearshore and offshore zooplankton communities in Lake Ontario: 1981–88. Can. J. Fish. aquat. Sci. 48: 1546–1557.

    Google Scholar 

  • Johnsen, G. H. & P. J. Jakobsen, 1987. The effect of food limitation on vertical migration in Daphnia longispina. Limnol. Oceanogr. 32: 873–880.

    Google Scholar 

  • Johnson, D. & T. E. Chua, 1973. Remarkable schooling behavior of a water flea Moina sp. (Cladocera). Crustaceana. 24: 332–333.

    Google Scholar 

  • Jouffre, D., T. Lam-Hoai, B. Millet & M. Amanieu, 1991. Spatial structuring of zooplankton communities and hydrodynamic pattern in coastal lagoons. Oceanol. Acta 14 489–504.

    Google Scholar 

  • Kils, U., 1992. The EcoSCOPE and DynIMAGE: microscale tools for in situ studies of predator-prey interactions. Arch. Hydrobiol. Beih. Ergebn. Limnol. 36 83–96.

    Google Scholar 

  • Klemetsen, A., 1970. Plankton swarms in lake Gjorkvatn, east Finmark Astarte. J. Arct. Biol. 3 83–85.

    Google Scholar 

  • Kolasa, J. & S. T. A. Pickett, 1991. Ecological heterogeneity. Springer-Verlag. New York.

    Google Scholar 

  • Kolasa, J. & C. D. Rollo, 1991. Introduction: The heterogeneity of heterogeneity: A glossary. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag. New York, 1: 1–23.

    Google Scholar 

  • Künne, C., 1925–26. Uber Schwarmbildung bei Bosmina longirostris O. F. M. Arch. Hydrobiol. 16: 508 pp.

  • Landry, M. R., 1978. Predatory feeding behavior of a marine copepod, Labidocera trispinosa. Limnol. Oceanogr. 23: 1103–1113.

    Google Scholar 

  • Langford, R. R., 1938. Diurnal and seasonal changes in the distribution of limnetic crustacea in lake Nipissing, Ontario. Univ. Toronto Stud. Biol. Ser. 45: 1–142.

    Google Scholar 

  • Leach, J. H., 1973. Seasonal distribution, composition and abundance of zooplankton in Ontario Waters of Lake St. Clair. Proc. 15th Conf. Int. Ass. Great Lakes Res. 54–64.

  • Lee, D. S. & D. J. Hall, 1989. Quantitative sampling of organisms/macroparticulates with a ROV using a collimated illumination system. Oceans 1989: 827–831.

    Google Scholar 

  • Legendre, L. & S. Demers, 1984. Towards dynamic biological oceanography and limnology. Can. J. Fish. aquat. Sci. 41: 2–19.

    Google Scholar 

  • Legendre, P., 1987. Constrained clustering. In Developments in numerical ecology. P. Legendre and L. Legendre (eds). NATO Adv. Study Inst. Ser. Ecol. Sci. 14: 289–307.

  • Legendre, P., 1993. Spatial autocorrelation: Trouble or new paradigm? Ecology (in press).

  • Legendre, P. & M. J. Fortin, 1989. Spatial analysis and ecological modelling. Vegetatio 80: 107–138.

    Google Scholar 

  • Lehman, J. T. & S. Scavia, 1982. Microscale nutrient patches produced by zooplankton. Proc. Nat. Acad. Sci. 79: 5001–5005.

    Google Scholar 

  • Leibold, M. A., 1990. Resources and predators can affect the vertical distributions of zooplankton. Limnol. Oceanogr. 55: 938–944.

    Google Scholar 

  • Levy, D. A., 1990. Reciprocal diel vertical migration behavior in planktivores and zooplankton in British Columbia lakes. Can. J. Fish. aquat. Sci. 47: 1755–1764.

    Google Scholar 

  • Levy, D. A., 1991. Acoustic analysis of diel vertical migration behavior of Mysis relicta and Kokanee (Oncirhynchus nerka) within Okanagan Lake, British Columbia. Can. J. Fish. aquat. Sci. 48: 67–72.

    Google Scholar 

  • Lussenhop, J., 1974. Victor Hensen and the development of sampling methods in ecology. J. Hist. Biol. 7: 319–337.

    Google Scholar 

  • Mackas, D. L. & C. M. Boyd, 1979. Spectral analysis of zooplankton spatial heterogeneity. Science 204: 62–64.

    Google Scholar 

  • Mackas, D. L., 1984. Spatial autocorrelation of plankton community composition in a continental shelf ecosystem. Limnol. Oceanogr. 29: 451–471.

    Google Scholar 

  • Mackas, D. L., K. L. Denman & M. R. Abbott, 1985. Plankton patchiness: biology in the physical vernacular. Bull. mar. Sci. 37: 652–674.

    Google Scholar 

  • Mackas, D. L., 1992. Seasonal cycle of zooplankton off southwestern British Columbia. Can. J. Fish. aquat. Sci. 49: 903–921.

    Google Scholar 

  • Malone, B. J. & D. J.McQueen, 1983. Horizontal patchiness in zooplankton populations in two Ontario kettle lakes. Hydrobiologia 99: 101–124.

    Google Scholar 

  • Marrase, C., J. H. Costello, T. Granata & J. R. Strickler, 1990. Grazing in a turbulent environment: Energy dissipation, encounter rates, and efficacy of feeding currents in Centropages hamatus. Proc. nat. Acad. Sci. 87: 1653–1657.

    Google Scholar 

  • McGowan, J. A., 1971. Oceanic biogeography of the Pacific. In Funnell, B. M. & W. R. Riedel (eds). The Micropaleontology of the Oceans. Cambridge University Press, Cambridge: 3–74.

    Google Scholar 

  • McIntosh, R. P., 1991. Concept and terminology of homogeneity and heterogeneity in ecology. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag. New York, 2: 24–26.

    Google Scholar 

  • McNaught, D. C. & A. D. Hasler, 1961. Surface schooling and feeding behaviour in white bass. Limnol. Oceanogr. 6: 53–60.

    Google Scholar 

  • Milne, B. T., 1991. Heterogeneity as a multiscale characteristic of landscapes. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag. New York: 4: 69–84.

    Google Scholar 

  • Morin, A., 1985. Variability of density estimates and the optimization of sampling programs for stream benthos. Can. J. Fish. aquat. Sci. 42: 1530–1534.

    Google Scholar 

  • Morin, A. & A. Cattaneo, 1992. Factors affecting sampling variability of freshwater periphyton and the power of periphyton studies. Can. J. Fish. aquat. Sci. 49: 1695–1703.

    Google Scholar 

  • Neess, J. C., 1949. A contribution to aquatic population dynamics. Ph. D. Thesis. Univ. Wis. Madison. 103 pp.

    Google Scholar 

  • Neill, W. E., 1992. Population variation in the ontogeny of predator-induced vertical migration of copepods. Nature (Lond.) 356: 54–57.

    Google Scholar 

  • Neill, W. E., 1990. Induced vertical migration in copepods as a defense against invertebrate predation. Nature 345: 524–526.

    Google Scholar 

  • Neill, W. E. & A. Peacock, 1980. Breaking the bottleneck: Interactions of invertebrate predators and nutrients in oligotrophic lakes. In Kerfoot, W. C. (ed.): Evolution and ecology of zooplankton communities. Am. Soc. Limnol. Oceanogr. Spec. Symp. 3: 715–724.

  • Noda, M., K. Kawabata, K. Gushima & S. Kakuda, 1992. Importance of zooplankton patches in foraging ecology of the planktivorous fish Chromis chrysurus (Pomacentridae) at Kuchinoerabu Island, Japan. Mar. Ecol. Prog. Ser. 87: 251–263.

    Google Scholar 

  • O'Neill, R. V., R. H. Gardner, B. T. Milne, M. G. Turner & B. Jackson, 1991. Heterogeneity and spatial hierarchies. In Kolasa, J. & S. T. A. Pickett (eds). Ecological heterogeneity. Springer-Verlag. New York: 5: 85–96.

    Google Scholar 

  • Pace, M. L., S. E. G. Findlay & D. Lints, 1991. Variance in zooplankton samples: evaluation of a predictive model. Can. J. Fish. aquat. Sci. 48: 146–151.

    Google Scholar 

  • Pace, M. L., S. E. G. Findlay & D. Lints, 1992. Zooplankton in advective environments: the Hudson River community and a comparative analysis. Can. J. Fish. aquat. Sci. 49: 1060–1069.

    Google Scholar 

  • Paffenhofer, G. A. & S. C. Knowles, 1979. Ecological implications of fecal pellet size, production and consumption by copepods. J. mar. Res. 37: 35–49.

    Google Scholar 

  • Paffenhofer, G. A., 1980. Zooplankton distribution as related to summer hydrographic conditions in Onslow Bay, North Carolina. Bull. mar. Sci. 30: 819–832.

    Google Scholar 

  • Paffenhofer, G. A. & S. C. Knowles, 1980. Omnivorousness in marine planktonic copepods. J. Plankton Res. 2: 355–365.

    Google Scholar 

  • Paffenhofer, G. A., T. B. Steward, M. J. Youngbluth & T. G. Bailey. 1991. High-resolution vertical profiles of pelagic tunicates. J. Plankton Res. 13: 971–981.

    Google Scholar 

  • Patalas, K., 1969. Composition and horizontal distribution of crustacean plankton in lake Ontario. J. Fish. Res. Bd Can. 26: 2135–2164.

    Google Scholar 

  • Patalas, K., 1981. Spatial structure of the crustacean planktonic community in Lake Winnipeg, Canada. Verh. int. Ver. Limnol. 21: 305–311.

    Google Scholar 

  • Patalas, K. & A. Salki, 1992. Crustacean plankton in Lake Winnipeg: variation in space and time as a function of lake morphology, geology, and climate. Can. J. Fish. aquat. Sci. 49: 1035–1059.

    Google Scholar 

  • Pieper, R. E., D. V. Holliday & G. S. Kleppel, 1990. Quantitative zooplankton distributions from multifrequency acoustics. J. Plankton Res. 12: 433–441.

    Google Scholar 

  • Pinel-Alloul, B., J. A. Downing, M. Pérusse & G. Codin-Blumer, 1988. Spatial heterogeneity in freshwater zooplankton: variation with body size, depth, and scale. Ecology 69: 1393–1400.

    Google Scholar 

  • Pinel-Alloul, B., G. Méthot, G. Verreault & Y. Vigneault. 1990. Zooplankton species associations in Québec lakes: variation with abiotic factors, including natural and anthropogenic acidification. Can. J. Pish. aquat. Sci. 47: 110–121.

    Google Scholar 

  • Pinel-Alloul, B. & D. Pont, 1991. Spatial distribution patterns in freshwater macrozooplankton: variation with scale. Can. J. Zool. 69: 1557–1570.

    Google Scholar 

  • Pingree, R. D., G. R. Forster & G. K. Morrison, 1974. Turbulent convergent tidal fronts. J. mar. Biol. Assoc. UK. 54: 469–479.

    Google Scholar 

  • Pont, D., 1986. Structure spatiale d'une population du cyclopide Acanthocyclops robustus dans une rizière de Camargue (France). Acta. Oecol. Gen. 7: 289–302.

    Google Scholar 

  • Price, H. J., 1989. Swimming behavior of krill in responses to algal patches: a mesocosm study. Limnol. Oceanogr. 34: 649–659.

    Google Scholar 

  • Pugh, P. R., 1978. The application of particle counting to an understanding of the small-scale distribution of plankton. In Steele, J. H. (ed.). Spatial pattern in plankton communities. Plenum Press, N.Y.

    Google Scholar 

  • Ragotzkie, R. A. & R. A. Bryson, 1953. Correlations of currents with the distribution of adult Daphnia in Lake Mendota. J. mar. Res. 12: 157–172.

    Google Scholar 

  • Richerson, P. J., T. M. Powell, M. R. Leigh-Abbott & J. A. Coil. 1978. Spatial heterogeneity in a closed basin. In Spatial pattern in plankton communities. J. H. Steele (ed.). Mar. Sci. (Plenum) 3: 239–276.

  • Riley, G. A., 1976. A model of plankton patchiness. Limnol. Oceanogr. 21: 873–880.

    Google Scholar 

  • Ringelberg, J., 1991. A mechanism of predator-mediated induction of diel vertical migration in Daphnia hyalina. J. Plankton Res. 13: 83–89.

    Google Scholar 

  • Rodriguez, M., P. Magnan & S. Lacasse, 1993. Fish species composition and lake abiotic variables in relation to the abundance and size structure of cladoceran zooplankton. Can. J. Fish. aquat. Sci. in press.

  • Rothschild, B. J. & T. R. Osborn, 1988. Small-scale turbulence and plankton contact rates. J. Plankton Res. 10: 465–474.

    Google Scholar 

  • Rudstam, L. G., N. Melnik, O. Timoshkin, S. Hansson, S. Pushkin & V. Nemov, 1992. Diel dynamics of an aggregation of Macrohectopus branickii (Crustacea, Amphipoda) in the Barguzin Bay, Lake Baikal, USSR. J. Great Lake Res. (in press).

  • Sameoto, D. D. & A. W. Herman, 1992. Effect of the outflow from the Gulf of St. Lawrence on Nova Scotia shelf zooplankton. Can. J. Fish. aquat. Sci. 49: 857–869.

    Google Scholar 

  • Schneider, D. C. & C. D. Bajdik, 1992. Decay of zooplankton patchiness generated at the sea surface. J. Plankton Res. 14: 531–543.

    Google Scholar 

  • Schulze, P. C., J. R. Strickler, B. I. Bergstrom, M. S. Berman, P. Donaghay, S. Gallager, J. F. Haney, B. R. Hargreaves, U. Kils, G. A. Paffenhofer, S. Richman, H. A. Vanderploeg, W. Welsch, D. Wethey & J. Yen, 1992. Video systems for in situ studies of zooplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol. 36: 1–21.

    Google Scholar 

  • Simard, Y., R. De Ladurantaye & J. C. Therriault. 1986. Aggregation of euphausiids along a coastal shelf in an upwelling environment. Mar. Ecol. Prog. Ser. 32: 203–215.

    Google Scholar 

  • Simard, Y. & D. L. Mackas, 1989. Mesoscale aggregations of euphausiid sound scattering layers on the continental shelf of Vancouver Island. Can. J. Fish. aquat. Sci. 46: 1238–1249.

    Google Scholar 

  • Simard, Y., P. Legendre, G. Lavoie & D. Marcotte, 1992. Mapping, estimating biomass, and optimizing sampling programs for spatially autocorrelated data: case study of the northern shrimp (Pandalus borealis). Can. J. Fish. aquat. Sci. 49: 32–45.

    Google Scholar 

  • Smith, F. E., 1972. Spatial heterogeneity, stability, and diversity in ecosystems. Trans. Conn. Acad. Arts Sci.44: 309–335.

    Google Scholar 

  • Smith, S. L., R. E. Pieper, M. V. Moore, L. G. Rudstam, C. H. Greene, J. E. Zamon, C. N. Flagg & C. E. Williamson, 1992. Acoustic techniques for the in situ observation of zooplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol. 36: 23–43.

    Google Scholar 

  • Sokal, R. R. & J. D. Thompson, 1987. Applications of spatial autocorrelation in ecology. IN: Developments in numerical ecology. P. Legendre & L. Legendre (eds). NATO Adv. Study Inst. Ser. Ecol. Sci. 14: 431–66.

  • Southern, R. & A. C. Gardiner, 1926. The seasonal distribution of the crustacea of the plankton of Lough Derg and the R. Shannon Sci. Invest. Minist. Fish. Irish. Free St. #1, 171 pp.

  • Sprules, W. G., B. Bergstrom, H. Cyr, B. R. Hargreaves, S. S. Kilham, H. J. MacIsaac, K. Matshushita, R. Stemberger & R. Williams, 1992. Non-video optical instruments for studying zooplankton distribution and abundance. Arch. Hydrobiol. Beih. Ergebn. Limnol. 36: 45–58.

    Google Scholar 

  • Stan, R. H., 1971. The horizontal-vertical distribution hypothesis: Langmuir circulation and Daphnia distributions. Limnol. Oceanogr. 16: 453–466.

    Google Scholar 

  • Strickler, J. R., 1977. Observation of swimming performances of planktonic copepods. Limnol. Oceanogr. 22: 165–170.

    Google Scholar 

  • Taylor, L. R., 1961. Aggregation, variance and the mean. Nature (Lond.) 189: 732–735.

    Google Scholar 

  • Tessier, A. J., 1983. Coherence and horizontal movements of patches of Holopedium gibberum (Cladocera). Oecologia 60: 71–75.

    Google Scholar 

  • Tiselius, P., 1992. Behavior of Acartia tonsa in patchy food environments. Limnol. Oceanogr. 37: 1640–1651.

    Google Scholar 

  • Tjossem, S. F., 1990. Effects of fish chemical cues on vertical migration behavior of Chaoborus. Limnol. Oceanogr. 35: 1456–1468.

    Google Scholar 

  • Tonn, W. M., J. J. Magnuson, M. Rask & J. Toivonen, 1990. Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. Am. Nat. 136: 345–375.

    Google Scholar 

  • Tonolli, V., 1958. Zooplankton swarms. Verh. int. Ver. Limnol. 13: 776–777.

    Google Scholar 

  • Urabe, J., 1990. Stable horizontal variation in the zooplankton community structure of a reservoir maintained by predation and competition. Limnol. Oceanogr. 35: 1703–1717.

    Google Scholar 

  • Watson, N. H. F., 1976. Seasonal distribution and abundance of crustacean zooplankton in Lake Erie, 1970. J. Fish. Res. Bd Can. 33: 612–621.

    Google Scholar 

  • Wiebe, P. H., 1970. Small-scale spatial distribution in oceanic zooplankton. Limnol. Oceanogr. 15: 205–217.

    Google Scholar 

  • Wiebe, P. H., N. J. Copley & S. H. Boyd, 1992. Coarse-scale horizontal patchiness and vertical migration of zooplankton in Gulf Stream warm-core ring 82-H. Deep-Sea Research Part A: Oceanographic research papers, 39: 247–278.

    Google Scholar 

  • Williamson, C. E., 1981. Foraging behavior of a freshwater copepod: Frequency changes in looping behavior at high and low prey densities. Oecologia 50: 332–336.

    Google Scholar 

  • Williamson, C. E. & N. M. Butler. 1986. Predation on rotifers by the suspension-feeding calanoid copepod Diaptomus pallidus. Limnol. Oceanogr. 31: 393–402.

    Google Scholar 

  • Williamson, C. E., P. C. Schulze & W. G. Sprules, 1992. Opening remarks: The need for advanced techniques for in situ studies of zooplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol. 36: 135–140.

    Google Scholar 

  • Williamson, C. E., 1993. Linking predation risk models with behavioral mechanisms: identifying population bottlenecks. Ecology 74: 320–331.

    Google Scholar 

  • Zeldis, J. R. & J. B. Jillet, 1982. Aggregation of pelagic Munida gregaria (Fabricius) (Decapoda, Anomura) by coastal fronts and internal waves. J. Plankton Res. 4: 839–857.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinel-Alloul, P. Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia 300, 17–42 (1995). https://doi.org/10.1007/BF00024445

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024445

Key words

Navigation