Skip to main content
Log in

Application of in vivo and in vitro mutation techniques for crop improvement

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Conventional mutation techniques have often been used to improve yield, quality, disease and pest resistance in crops, or to increase the attractiveness of flowers and ornamental plants. More than 1700 mutant varieties involving 154 plant species have been officially released. In some economically important crops, e.g. barley, durum wheat and cotton, mutant varieties occupy the majority of cultivated areas in many countries. Mutation techniques have become one of the major tools in the breeding of ornamentals such as alstroemeria, begonia, chrysanthemum, carnation, dahlia and streptocarpus. The use of in vitro techniques such as anther culture, shoot organogenesis, somatic embryogenesis and protoplast fusion can overcome some of the limitations in the application of mutation techniques in both seed and vegetatively propagated crops. In vitro culture in combination with induced mutations can speed up breeding programmes, from the generation of variability, through selection, to multiplication of the desired genotypes. The expression of induced mutations in the pure homozygote obtained through microspore, anther or ovary culture, can enhance the rapid recovery of the desired traits. In some vegetatively propagated species, mutations in combination with in vitro culture technique, may be the only method of improving an existing cultivar. Currently, many molecular studies rely on the induction and identification of mutants in ‘model species’ for construction and subsequent saturation of genetic maps, understanding of developmental genetics and elucidation of biochemical pathways. Once identified and isolated, the genes that encode agronomically-important features can be either introduced directly into crop plants or used as probes to search for similar genes in crop species. It seems most likely that the recent developments based on these technologies will soon provide improved methods for selection of desired mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahloowalia B.S., 1975. Regeneration of ryegrass plants in tissue culture. Crop Sci. 15: 449–452.

    Google Scholar 

  • Ahloowalia B.S., 1976. Chromosomal changes in parasexually produced ryegrass. p. 115–122. In: K. Jones & P.E. Brandham (Eds). Current Chromosome Research. Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Ahloowalia B.S., 1983. Spetrum of variation in somaclones of triploid ryegrass. Crop Sci. 23: 1141–1147.

    Article  Google Scholar 

  • Ahloowalia B.S., 1986. Limitation to the use of somaclonal variation in crop improvement. p. 14–27. In: J. Semal (Ed). Somaclonal Variation and Crop Improvement. Martinus Nijhoff Pub., Dordrecht.

    Google Scholar 

  • Ahloowalia B.S. & J. Sherington, 1985. Transmission of somaclonal variation in wheat. Euphytica 34: 525–537.

    Article  Google Scholar 

  • Ahloowalia B.S., 1990. In vitro radiation induced mutagenesis in potato. p. 39–46. In: R.S. Sangwan & B.S. Sangwan-Norreel (Eds). The Impact of Biotechnology in Agriculture. Kluwer Academic Publisher, Dordrecht.

    Google Scholar 

  • Ashri A., 1993. Mutation breeding of oil crops. p. 82–94. In: M. Maluszynski & A. Ashri (Eds). Report of the First FAO/IAEA Seminar on the Use of Induced Mutations and Related Biotechnology for Crop Improvement for the Middle East and the Mediterranean Regions. IAEA, Vienna.

    Google Scholar 

  • Auld D.L., M.K. Heikkinen, D.A. Erickson, J.L. Semyk & J.E. Romero, 1992. Rapeseed mutants with reduced levels of polyunsaturated fatty acids and increased levels of oleic acid. Crop Sci. 32: 657–662.

    CAS  Google Scholar 

  • Bartos P., 1993. Chromosome 1R of rye in wheat breeding Plant Breeding Abstracts 63: 1203–1211.

    Google Scholar 

  • Behnke M., 1979. Selection of potato callus for resistance to culture tiltrates of Phytophthora infestans and regeneration of resistant plants. Theor. Appl. Genet. 55: 69–71.

    Article  Google Scholar 

  • Behnke M., 1980. General resistance to blight of Solanum tuberosum plants regenerated from callus resistant to culture filtrates of Phytophthora infestans. Theor. Appl. Genet. 56: 151–152.

    Article  Google Scholar 

  • Beversdorf W.D. & L.S. Kott, 1987. An in vitro mutagenesis/selection system for Brassica napus. Iowa State J. Res. 61: 435–443.

    Google Scholar 

  • Binding H., K. Binding & J. Straub, 1970. Selektion in Gewebekulturen mit haploiden Zellen. Naturwissensch. 3: 138–139.

    Article  Google Scholar 

  • Bouma J. & Z. Ohnoutka, 1991. Importance and application of the mutant ‘Diamant’ in spring barley breeding. p. 127–133. In: Plant Mutation Breeding for Crop Improvement, Vol. 1. IAEA, Vienna.

    Google Scholar 

  • Bradley D. & R.E. Pruitt, 1992. Development genetics of Arabidopsis. p. 225–241. In: V.E.A. Russo, S. Brody, D. Cove & S. Ottolenghi (Eds). Development, the Molecular Genetic Approach. Springer-Verlag, Berlin.

    Google Scholar 

  • Broertjes C. & A.M.van Harten, 1988. Applied mutation breeding for vegetatively propagated crops. Elsevier, Amsterdam.

    Google Scholar 

  • Brown P.T.H., 1991. The spectrum of molecular changes associated with somaclonal variation. Newsletter IAPTC 66: 14–25.

    Google Scholar 

  • Brown P.T.H., F.D. Lange, E. Kranz & H. Lörz, 1993. Analysis of single protoplasts and regenerated plants by PCR and RAPD technology. Mol. Gen. Genet. 237: 311–317.

    PubMed  CAS  Google Scholar 

  • Carlson P.S., 1973. Methionine sulfoximine-resistant mutants of tobacco. Science 180: 1366–1368.

    Article  PubMed  CAS  Google Scholar 

  • Chaleff R.S., 1983. Isolation of agronomically useful mutants from plant cell cultures. Science 219: 676–682.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury A.M., M. Lavithis, P.E. Taylor, S. Craig, M.B. Singh, E.R. Signer, R.B. Knox & E.S. Dennis, 1994. Genetic control of male fertility in Arabidopsis thaliana: structural analysis of premeiotic developmental mutants. Sex Plant Reprod. 7: 17–28.

    Article  Google Scholar 

  • Dix P.J. & H.E. Street, 1975. Sodium chloride-resistant cultured cell lines from Nicotiana sylvestris and Capsicum annuum. Plant Sci. Lett. 5: 231–237.

    Article  Google Scholar 

  • Delbreil B. & M. Jullien, 1994. Evidence of in vitro induced mutation which improves somatic embryogenesis in Asparagus officinalis L. Plant Cell Rep. 13: 372–376.

    Article  CAS  Google Scholar 

  • Dörffling K., H. Dörffling & G. Lessilich, 1993. In vitro-selection and regeneration of hydroxyproline resistant lines of winter wheat with increased proline content and increased frost tolerance. J. Plant Physiol. 142: 222–225.

    Google Scholar 

  • Duncan D.R. & J.M. Widholm, 1990. Techniques for selecting mutants from plant tissue cultures. p. 443–453. In: J.W. Pollard & J.M. Walker (Eds). Methods in Molecular Biology, Vol. 6, Plant Cell and Tissue Culture. The Humana Press, Clifton.

    Chapter  Google Scholar 

  • Evans D.A. & W.R. Sharp, 1983. Single gene mutations in tomato plants regenerated from tissue culture. Science 221: 949–951.

    Article  PubMed  CAS  Google Scholar 

  • FAO/IAEA, 1977. Manual on mutation breeding. Second Edition. p. 288. IAEA, Vienna.

    Google Scholar 

  • Feldmann K.A., 1991. T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. The Plant J. 1: 71–82.

    Article  CAS  Google Scholar 

  • Forster, B.P., 1994. Salt tolerance of barley mutant ‘Golden Promise’. MBNL 41 (in press).

  • Friebe B., J. Jiang, B.S. Gill & P.L. Dyck, 1993. Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor. Appl. Genet. 86: 141–149.

    Article  Google Scholar 

  • Gengenbach B.G., C.E. Green & C.M. Donovan, 1977. Inheritance of selected pathotoxin resistance in maize plants regenerated from cell culture. Proc. Natl. Acad. Sci. USA 74: 5113–5117.

    Article  PubMed  CAS  Google Scholar 

  • Green A.G., 1986. Genetic control of polyunsaturated fatty acid biosynthesis in flax (Linum usitatissimum) seed oil. Theor. Appl. Genet. 72: 654–661.

    Article  CAS  Google Scholar 

  • Heinz D.J., M. Krishnamurthi, L.G. Nickell & A. Maretzki, 1977. Cell, tissue and organ culture in sugarcane improvement. p. 1–17. In: J. Reinert & Y.P.S. Bajaj (Eds). Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture. Springer-Verlag, Berlin.

    Google Scholar 

  • Hemming D., 1993. Production and uses of genetically transformed plants. AgBiotech News and Information 5: 287N-292N.

    Google Scholar 

  • Huang B., 1992. Genetic manipulation of microspores and microspore-derived embryos. In Vitro Cell. Dev. Biol. 28: 53–58.

    Google Scholar 

  • James D.W. & H.K. Dooner, 1991. Novel seed lipid phenotypes in combinations of mutants altered in fatty acid biosynthesis in Arabidopsis. Theor. Appl. Genet. 82: 409–412.

    Article  CAS  Google Scholar 

  • Jende-Strid B., 1993. Genetic control of flavonoid biosynthesis in barley. Hereditas 119: 187–204.

    Article  CAS  Google Scholar 

  • Jones D.F., 1945. Heterosis resulting from degenerative changes. Genetics 30: 527–542.

    PubMed  CAS  Google Scholar 

  • Kasha K.J., A. Ziauddin, E. Simion & L. Cistue, 1993. Microspore cultures of barley and wheat: Targets for change. p. 77–81. In: M. Maluszynski & A. Ashri (Eds). Report of the First FAO/IAEA Seminar on the Use of Induced Mutations and Related Biotechnology for Crop Improvement for the Middle East and the Mediterranean Regions. IAEA, Vienna. Kinoshita, T., 1982. Inheritance of cytoplasmic male sterility induced by chemical mutagens in sugarbeet. Proc. Sugar Beet Res. Assoc. 38–45.

    Google Scholar 

  • Klu G.Y.P., 1993. Induced dwarf-type mutant of yam, Dioscorea rotundata Poir. Trop. Agric. 70: 289–290.

    Google Scholar 

  • Konzak C.F., 1984. Role of induced mutations. p. 216–292. In: P.B. Vose & S.G. Blixt (Eds). Crop Breeding, Pergamon Press, Oxford.

    Google Scholar 

  • Lundqvist, U. & A. Lundqvist, 1994. Intermedium mutants of barley-diversity, interactions and plant breeding value. FAO/IAEA Research Report 4466/CF (in press).

  • Mabbett, T., 1992. Herbicide tolerant crops-ICI seeds leads the way. Int. Pest Control No. 2: 49–56.

    Google Scholar 

  • Maliga P., 1984. Isolation and characterization of mutants in plant cell cultures. Ann. Rev. Plant Physiol. 35: 519–552.

    CAS  Google Scholar 

  • Maluszynski M., 1990. Induced mutations-an integrating tool in genetics and plant breeding. p. 127–162. In: J.P. Gustafson (Ed). Gene Manipulation in Plant Improvement II. Proc. 9th Stadler Genetics Symp. Plenum Press, New York.

    Google Scholar 

  • Maluszynski M., A. Fuglewicz, I. Szarejko & A. Micke, 1989. Barley mutant heterosis. p. 129–146. In: M. Maluszynski (Ed). Current Options for Cereal Improvement. Doubled Haploids, Mutants and Heterosis. Kluwer Academic Publisher, Dordrecht.

    Google Scholar 

  • Maluszynski, M., E. Amano, B. Ahloowalia, L. van Zanten & B. Sigurbjörnsson, 1994. Mutation techniques and related biotechnologies for rice improvement. p. 294. In: Seventh Meeting of the International Program on Rice Biotechnology, May 1994, Bali, The Rockefeller Foundation. New York.

  • Maluszynski M., B. Sigurbjörnsson, E. Amano, L. Sitch & O. Kamra, 1991. Mutant varieties-data bank, FAO/IAEA database. MBNL 38: 16–21.

    Google Scholar 

  • Maluszynski M., B. Sigurbjörnsson, E. Amano, L. Sitch & O. Kamra, 1992. Mutant varieties-data bank, FAO/IAEA database Part II. MBNL 39: 14–17.

    Google Scholar 

  • Maluszynski, M. & I. Szarejko, 1994. Mutant heterosis and production of F1-performing DH lines. MBNL 41 (in press).

  • Maluszynski, M., I. Szarejko, R. Madajewski, A. Fuglewicz & M. Kucharska, 1988. Semi-dwarf mutants and heterosis in barley. I. The use of barley sd-mutants for hybrid breeding. p. 193–206. In: Semi-Dwarf Cereal Mutants and Their Use in Cross-Breeding III. IAEA-TECDOC 455, Vienna.

  • Mayer U., R.A. Torres Ruiz, T. Berleth, S. Misera & G. Jurgens, 1991. Mutations affecting body organization in the Arabidopsis embryo. Nature 353: 402–407.

    Article  Google Scholar 

  • MBNL, 1988. List of cultivars. 31: 30.

    Google Scholar 

  • Melchers G. & L. Bergmann, 1959. Untersüchungen an Kulturen von haploiden Geweben von Antirrhinum majus. Ber. Dtsch. Bot. Ges. 78: 21–29.

    Google Scholar 

  • Micke A., 1991. Induced mutations for crop improvement. Gamma Field Symp. 30: 1–21.

    Google Scholar 

  • Micke A., B. Donini & M. Maluszynski, 1990. Induced mutations for crop improvement. Mutat. Breed. Rev. 7: 1–41.

    Google Scholar 

  • Miller O.K. & K.W. Hughes, 1980. Selection of paraquat-resistant variants of tobacco from cell cultures. In Vitro 16: 1085–1091.

    Article  Google Scholar 

  • Millet, E. & M. Feldman, 1994. Deletion of the secalin gene Sec-1 in 1BL/1RS line by gamma irradiation. In: Proc. 8th Int. Wheat Genetics Symp. Beijing, July 1993 (in press).

  • Min, S., Z. Qi, Z. Xiong & Ch. Zhao, 1989. Effects of gammaradiation treatment in somatic cell culture of indica rice Basmati 370 selection. In: Proc. of the 6th Int. Congr. of SABRAO, p. 793–796.

  • Muller A.J., 1983. Genetic analysis of nitrate reductase deficient tobacco plants regenerated from mutant cells. Evidence for duplicate structural genes. Mol. Gen. Genet. 192: 275–281.

    Article  Google Scholar 

  • Nabors M.W., 1983. Increasing the salt and drought tolerance of crop plants. p. 165–184. In. R.R. Randall (Ed). Current Topics in Plant Biochemistry and Physiology 2. Univ. Missouri Press, Columbia.

    Google Scholar 

  • Nelshoppen J.M. & J.M. Widholm, 1990. Mutagenesis techniques in plant tissue cultures. p. 413–430. In: J.W. Pollard & J.M. Walker (Eds). Methods in Molecular Biology, Vol. 6, Plant Cell and Tissue Culture. The Humana Press, Clifton.

    Chapter  Google Scholar 

  • NIAB, 1988. Successful application of nuclear techniques for the improvement of cotton crop and role of NIAB-78 in cotton production. p. 1–16. In: Nuclear Institute for Agriculture and Biology. Faisalabad.

  • Novak F.J., 1991. In vitro mutation system for crop improvement. p. 327–342. In: Plant Mutation Breeding for Crop Improvement, Vol. 2. IAEA, Vienna.

    Google Scholar 

  • Novak F.J., R. Afza, M.van Duren & M.S. Omar, 1990. Mutation induction by gamma irradiation of in vitro cultured shoot-tips of banana and plantain (Musa cvs.). Trop. Agric. 67 (1): 21–28.

    Google Scholar 

  • Redei G.P. & C. Koncz, 1992. Classical mutagenesis. p. 16–82. In: C. Koncz, N-H. Chua & J. Schell (Eds). Methods in Arabidopsis Research. World Scientific, Singapore.

    Google Scholar 

  • Roc J.L., C.J. Rivin, R.A. Sessions, K.A. Feldmann & P.C. Zambryski, 1993. The Tousled gene in A. thaliana encodes a protein kinase homology that is required for leaf and flower development. Cell 75: 939–950.

    Article  Google Scholar 

  • Rowlett K., D. Hemming, S. Hobbs, D. Massey & A. Rostron, 1993. Seventeenth International Congress of Genetics: Genetics and the understanding of life. AgBiotech News and Information 5: 337N-360N.

    Google Scholar 

  • Rutger J.N., 1992. Impact of mutation breeding in rice—a review. Mutat. Breed. Rev. 8: 1–24.

    Google Scholar 

  • Sacristan M.D., 1982. Resistance response to Phoma lingam of plants regenerated from selected cell and embryogenic cultures of haploid Brassica napus. Theor. Appl. Genet. 61: 193–200.

    Google Scholar 

  • Safo-Kantanka O. & J. Owusu-Nipah, 1993. Cassava varietal screening for cooking quality: Relationship between dry matter, starch content, mealiness and certain microscopic observations of the raw and cooked tuber. J. Sci. Food Agric. 60: 99–104.

    Article  Google Scholar 

  • Schaeffer G.W., F.T. SharpJr., H.L. Carnhan & C.W. Johnson, 1986. Anther and tissue culture-induced grain chalkiness and associated variants in rice. Plant Cell, Tissue and Organ Culture 6: 149–157.

    Article  Google Scholar 

  • Sears E.R., 1956. The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Syma. Biol. 9: 1–22.

    Google Scholar 

  • Sears E.R., 1993. Use of radiation to transfer alien chromosome segments to wheat. Crop Sci. 33: 897–901.

    Google Scholar 

  • Sharpe F.T. & G.W. Schaffer, 1993. Distribution of amino acids in bran, embryo and milled endosperm and shifts in storage protein subunits of in vitro-selected and lysine-enhanced mutant and wild type rice. Plant Sci. 90: 145–154.

    Article  CAS  Google Scholar 

  • Sigurbjömsson B., 1983. Induced mutations. p. 153–176. In: D.R. Wood (Ed). Crop Breeding, American Society of Agronomy and Crop Science Society of America. Madison, Wisconsin.

    Google Scholar 

  • Sigurbjömsson B. & A. Micke, 1974. Philosophy and accomplishment of mutation breeding. p. 303–343. In: Polyploidy and Induced Mutations in Plant Breeding. IAEA, Vienna.

    Google Scholar 

  • Somerville C. & J. Browse, 1991. Plant lipids: metabolism, mutants, and membranes. Science 252: 80–87.

    Article  PubMed  CAS  Google Scholar 

  • Sonnino A., G. Ancora & C. Locardi, 1986. In vitro mutation breeding of potato. p. 385–394. In: Nuclear Techniques and In Vitro Culture for Plant Improvement. IAEA, Vienna.

    Google Scholar 

  • Stadler L.J., 1930. Some genetic effects of x-rays in plants. J. Hered. 21: 2–19.

    Google Scholar 

  • Straus D. & F.M. Ausubel, 1990. Genomic subtraction for cloning DNA corresponding to deletion mutations. Proc. Natl. Acad. Sci. USA 87: 1889–1893.

    Article  PubMed  CAS  Google Scholar 

  • Sun T-P., H.M. Goodman & F.M. Ausubel, 1992. Cloning the Arabidopsis GAI locus by genomic subtraction. The Plant Cell 4: 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Swanson E.B., M.J. Herrgeseli, M. Arnoldo, D. Sippell & R.S.C. Wong, 1989. Microspore mutagenesis and selection: Canola plants with field tolerance to the imidazolinones. Theor. Appl. Genet. 78: 525–530.

    Article  CAS  Google Scholar 

  • Szarejko I., M. Maluszynski, K. Polok & A. Kilian, 1991. Doubled haploids in the mutation breeding of selected crops. p. 355–378. In: Plant Mutation Breeding for Crop Improvement, Vol. 2. IAEA, Vienna.

    Google Scholar 

  • Tonnemaker K.A., D.L. Auld, D.C. Thill, C.A. Mallory-Smith & D.A. Erickson, 1992. Development of sulfonylurea-resistant rapessed using chemical mutagenesis. Crop Sci. 32: 1387–1391.

    CAS  Google Scholar 

  • Umba di-Umba., M. Maluszynski, I. Szarejko & J. Zbieszczyk, 1991. High frequency of barley DH-mutants from M1 after mutagenic treatment with MNH and sodium azide. MBNL 38: 8–9.

    Google Scholar 

  • Von Wettstein D., B. Jende-Strid, B. Ahrenst-Larsen & J.A. Sorensen, 1977. Biochemical mutant in barley renders chemical stabilization of beer superfluous. Carlsberg Res. Commun. 42: 341–351.

    Article  Google Scholar 

  • Wang X., O. Olsen & S. Knudsen, 1993. Expression of the dihydroflavonol reductase gene in an anthocyanin-free barley mutant. Hereditas 119: 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Williams N.D., J.D. Miller & D.L. Klindworth, 1992. Induced mutations of a genetic suppressor of resistance to wheat stem rust. Crop Sci. 32: 612–616.

    Google Scholar 

  • Winicov I., 1991. Characterization of salt tolerant alfalfa (Medicago sativa L.) plants regenerated from salt tolerant cell lines. Plant Cell Rep. 10: 5461–5464.

    Article  Google Scholar 

  • Worland A.J. & C.N. Law, 1991. Improving disease resistance in wheat by inactivating genes promoting disease susceptibility. MBNL 38: 2–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maluszynski, M., Ahloowalia, B.S. & Sigurbjörnsson, B. Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85, 303–315 (1995). https://doi.org/10.1007/BF00023960

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023960

Key words

Navigation