Skip to main content
Log in

Characteristics of an acoustic emission source from a thermal crack in glass

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Thermal cracks of mode I type oriented normal to the surface along an initial scratch were generated by blowing cold nitrogen gas through a small nozzle onto the surface of a glass plate. Acoustic emission (AE) signals emitted from the thermal cracks were detected on the opposite side of the plate, both at epicentral and at off-epicentral positions with a nine-channel AE system. AE source characteristics, such as moment tensor components, source-time function, radiation pattern, and dipole strength, were obtained from the detected waveforms. The strength of dipoles associated with the thermal cracks was determined from comparing the crack signals to those generated when a glass capillary was broken at the crack site prior to crack formation. It is shown that the AE source-time function, together with the dipole strength, can provide valuable information on the dynamic behavior of fracture.

Résumé

On a créé des fissures thermiques de Mode I orientées normalement à une surface en projetant de l'azote froid par un petit ajustage sur une rainure initiale à la surface d'une plaque de verre. Les signaux d'émission acoustique émis par la fissure thermique ont été détectés sur la face opposée de la plaque, à l'épicentre et en d'autres positions par rapport à la fissure, en utilisant un système de captation à neux canaux. Les formes d'ondes détectées fournissent les caractéristiques de la source acoustique, telles que les composantes du tenseur de moment, la fonction sourcetemps, la répartition de la radiation et la puissance du dipole. Cette dernière grandeur a été déterminée, lorsqu'elle est associée aux fissures thermiques, en comparant les signaux obtenus à ceux que produit un capillaire de verre rompu à l'endroit de la fissure, avant que celle-ci se forme. On montre que la fonction d'émission acoustique source-temps ainsi que la puissance dipole peuvent fournir des informations valables sur le comportement dynamique d'une rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.Aki and P.G.Richards, Quantitative Seismology: Theory and Methods, Vol. I, Freeman, San Francisco (1980) Chapter 3.

    Google Scholar 

  2. K.Y. Kim and W. Sachse, in Progress in Acoustic Emission II, M. Onoe, K. Yamaguchi, and H. Takahashi, Ed., Proceedings of the 7th International Acoustic Emission Symposium, Zao, Japan, October 23–26, Japanese Society for Non-destructive Evaluation (1984) 163–172.

  3. K.Y.Kim and W.Sachse, Journal of Applied Physics 59 (1986) 2704–2710; 2711–2715.

    Article  Google Scholar 

  4. L.Knopoff, Journal of Applied Physics 29 (1958) 661–670.

    Google Scholar 

  5. N.N.Hsu, J.A.Simmons, and S.C.Hardy, Materials Evaluation 35 (10) (1977) 100–106.

    Google Scholar 

  6. Y.H.Pao and R.R.Gajewski, in Physical Acoustics, Vol. XIII, W.P.Mason and R.N.Thurston, Ed., Academic Press, New York (1977) 183–265.

    Google Scholar 

  7. A.N.Ceranoglu and Y.H.Pao, Transactions of ASME 48 (1981) 125–132; 48 (1981) 133–138; 48 (1981) 139–147.

    Google Scholar 

  8. K.Y.Kim and W.Sachse, Journal of Applied Physics 55 (1984) 2847–2856.

    Article  Google Scholar 

  9. W.Nowacki, Thermoelasticity, Addison-Wesley, London (1962) 102–113.

    Google Scholar 

  10. F.Gilbert, Geophysical Journal of the Royal Astronomical Society 22 (1970) 223–226.

    Google Scholar 

  11. D.J. Doornbos, in Identification of Seismic Sources-Earthquake or Underground Explosion, E.S. Husebye and S. Mykkeltvert, Ed., D. Reidel Publishing Co. (1981) 207–232.

  12. G.Bachus and M.Mulcahy, Geophysical Journal of the Royal Astronomical Society 46 (1976) 341–361.

    Google Scholar 

  13. G.Bachus and M.Mulcahy, Geophysical Journal of the Royal Astronomical Society 47 (1976) 301–329.

    Google Scholar 

  14. A.E.H.Love, A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, Fourth ed., (1944) 186–189.

    Google Scholar 

  15. P.M.Morse and H.Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York (1953) Part I, Chapter 7.

    Google Scholar 

  16. G.Bachus, Geophysical Journal of the Royal Astronomical Society 51 (1977) 1–25; 51 (1977) 27–45.

    Google Scholar 

  17. J.E.Michaels and Y.H.Pao, Journal of the Acoustical Society of America 77 (1985) 2005–2011.

    Google Scholar 

  18. D.S.Dugdale, Journal of the Mechanics and Physics of Solids 8 (1960) 100–104.

    Article  Google Scholar 

  19. G.I.Barenblatt, Advances in Applied Mechanics 7 (1962) 55–129.

    Google Scholar 

  20. J.R.Rice, Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  21. A.A.Griffith, Philosophical Transactions of the Royal Society, London, A 221 (1920) 163–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K.Y., Sachse, W. Characteristics of an acoustic emission source from a thermal crack in glass. Int J Fract 31, 211–231 (1986). https://doi.org/10.1007/BF00018928

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018928

Keywords

Navigation