Skip to main content
Log in

Chemotaxis, induced gene expression and competitiveness in the rhizosphere

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Rhizobia are soil bacteria which symbiotically infect legume roots and generate nodules in which they fix atmospheric nitrogen for the plant in exchange for photosynthetically fixed carbon. A crucial aspect of signal exchange between these symbionts is the secretion of phenolic compounds by the host root which induce nodulation gene expression in the bacteria. Stimulation of nod gene expression by host phenolics is required for nodule formation, is biochemically specific at 10-6 M, and is mediated by nodD. We and others have shown that rhizobia display chemotaxis to 10-9 M of the same phenolic compounds. Chemotaxis to inducer phenolics is selectively reduced or abolished by mutations in certain nod genes governing nodulation efficiency or host specificity. Conversely, mutations in rhizobia that affect general motility or chemotaxis have substantial effects on nodulation efficiency and competitiveness. These findings suggest that microbes entering the rhizosphere environment may utilize minor, non-nutrient components in root exudates as signals to guide their movement towards the root surface and elicit changes in gene expression appropriate to this environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguilar J M M, Ashby A M, Richards A J M, Loake G J, Watson M D and Shaw C H 1988 Chemotaxis of Rhizobium leguminosarum towards flavonoid inducers of the symbiotic nodulation genes. J. Gen. Microbiol. 134, 2741–2746.

    Google Scholar 

  • Ames P and Bergman K 1981 Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J. Bacteriol. 148, 728–729.

    Google Scholar 

  • Ames P, Schluederberg S A and Bergman K 1980 Behavioral mutants of Rhizobium meliloti. J. Bacteriol. 141, 722–727.

    Google Scholar 

  • Armitage J P, Gallagher A and Johnston A W B 1988 Comparison of the chemotactic behaviour of Rhizobium leguminosarum with and without the nodulation plasmid. Mol. Microbiol. 2, 743–748.

    Google Scholar 

  • Ashby A M, Watson M D and Shaw C H 1987 A Ti-plasmid determined function is responsible for chemotaxis of Agrobacterium tumefaciens towards the plant wound product acetosyringone. FEMS Microbiol. Lett. 41, 189–192.

    Google Scholar 

  • Ashby A M, Watson M D, Loake G J and Shaw C H 1988 Ti plasmid-specific chemotaxis of Agrobacterium tumefaciens C58C toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J. Bacteriol. 170, 4181–4187.

    Google Scholar 

  • Bauer W D 1981 Infection of legumes by rhizobia. Annu. Rev. Plant Physiol. 32, 407–449.

    Google Scholar 

  • Bergey's Manual of Systematic Bacteriology 1984. Williams and Wilkins, Baltimore.

  • Bergman K, Gulash-Hoffee M, Hovestadt R E, Larosiliere R C, Ronco P G and Su L 1988 Physiology of behavioral mutants of Rhizobium meliloti: evidence for a dual chemotaxis pathway. J. Bacteriol. 170, 3249–3254.

    Google Scholar 

  • Bhuvaneswari T V, Bhagwat A A and Bauer W D 1981 Transient susceptibility of root cells in four common legumes to nodulation by rhizobia. Plant Physiol. 68, 1144–1149.

    Google Scholar 

  • Bohlool B B and Schmidt E L 1976 Immunofluorescent polar tips of Rhizobium japonicum: possible site of attachment or lectin binding. J. Bacteriol. 125, 1188–1194.

    Google Scholar 

  • Bowen G D and Rovira A D 1976 Microbial colonization of plant roots. Annu. Rev. Phytopath. 14, 121–144.

    Google Scholar 

  • Burg D, Guillaume J and Tailliez R 1982 Chemotaxis by Rhizobium meliloti. Arch Microbiol. 133, 162–163.

    Google Scholar 

  • Caetano-Anolles G, Crist-Estes D K and Bauer W D 1988a Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J. Bacteriol. 170, 3164–3169.

    Google Scholar 

  • Caetano-Anolles G, Wall L G, DeMicheli A T, Macchi E M, Bauer W D and Favelukes G 1988b Motility and chemotaxis affect nodulating efficiency of Rhizobium meliloti. Plant Physiol. 86, 1228–1235.

    Google Scholar 

  • Caetano-Anolles G and Bauer, W D 1988 Enhanced nodule initiation on alfalfa by wild-type Rhizobium meliloti coinoculated with nod gene mutants and other bacteria. Planta 174, 385–395.

    Google Scholar 

  • Calvert H E, Pence M K, Pierce M, Malik N S A and Bauer W D 1984 Anatomical analysis of the development and distribution of Rhizobium infections in soybean roots. Can. J. Bot. 62, 2375–2384.

    Google Scholar 

  • Chet I and Mitchell, R 1976 Ecological aspects of microbial chemotactic behavior. Annu. Rev. Microbiol. 30, 221–239.

    Google Scholar 

  • Crist D K, Wyza R E, Mills K K, Bauer W D and Evans W R 1984 Preservation of Rhizobium viability and symbiotic infectivity by suspension in water. Appl. Environ. Microbiol. 47, 895–900.

    Google Scholar 

  • Curl E A and Truelove B 1986 The Rhizosphere. Springer-Verlag, Berlin.

    Google Scholar 

  • Currier W W and Strobel G A 1976 Chemotaxis of Rhizobium species to plant root exudates. Plant Physiol. 57, 820–823.

    Google Scholar 

  • Currier W W and Strobel G A 1981 Characterization and biological activity of trefoil chemotactin. Plant Sci. Lett. 21, 159–165.

    Google Scholar 

  • DeLey J and Rassel A 1965 DNA base composition, flagellation and taxonomy of the genus Rhizobium. J. Gen. Microbiol. 41, 85–91.

    Google Scholar 

  • Demezas D H and Bottomley P J 1986 Autecology in rhizospheres and nodulating behavior of indigenous Rhizobium trifolii. Appl. Environ. Microbiol. 52, 1014–1019.

    Google Scholar 

  • DeWeger L A, Vlugtvan der C I M, Wijfjes A H M, Bakker P A H M, Schippers B and Lugtenberg B 1987 Flagella of a plant-growth stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J. Bacteriol. 169, 2769–2773.

    Google Scholar 

  • Djordevic M A, Gabriel D W and Rolfe B G 1987 Rhizobium—the refined parasite of legumes. Annu. Rev. Phytopathol. 25, 145–168.

    Google Scholar 

  • Dudley M E, Jacobs T W and Long S R 1987 Microscopic studies of cell divisions induced in alfalfa roots by Rhizobium meliloti. Planta 171, 289–301.

    Google Scholar 

  • El Haloui N E, Ochin D, and Tailliez R 1986 Infection competitivity between Rhizobium meliloti strains: role of motility. Plant and Soil 95, 337–344.

    Google Scholar 

  • Gaworzewska E T and Carlile M J 1982 Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards exudates from legumes and other plants. J. Gen. Microbiol. 128, 1179–1188.

    Google Scholar 

  • Gitte R R, Vittal Rai P and Patil R B 1978 Chemotaxis of Rhizobium spp towards root exudate of Cicer arietinum L. Plant and Soil 50, 533–566.

    Google Scholar 

  • Gotz R and Schmitt R 1987 Rhizobium meliloti swims by unidirectional, intermittent roation of right-handed flagellar helices. J. Bacteriol. 169, 3146–3150.

    Google Scholar 

  • Gotz R, Limmer N, Ober K and Schmitt R 1982 Motility and chemotaxis in two strains of Rhizobium with complex flagella. J. Gen. Microbiol. 128, 789–798.

    Google Scholar 

  • Griffin D M and Quail G 1968 Movemet of bacteria in moist, particulate systems. Aust. J. Biol Sci. 21, 579–582.

    Google Scholar 

  • Gulash M, Ames P, LaRosiliere R C and Bergman K 1984 Rhizobia are attracted to localized sites on legume root. Appl. Environ. Microbiol. 48, 149–152.

    Google Scholar 

  • Hartwig U A, Maxwell C A, Joseph C M and Phillips D A 1989 Interactions among flavonoid nod gene inducers released from alfalfa seeds and roots. Plant Physiol. 91, 1138–1142.

    Google Scholar 

  • Harwood C S, Rivelli M and Ornston L N 1984 Aromatic acids are chemoattractants for Pseudomonas putida. J. Bacteriol. 160, 622–628.

    Google Scholar 

  • Howie W J, Cook R J and Weller D M 1987 Effects of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology 77, 286–292.

    Google Scholar 

  • Humbeck C, Thierfelder H, Gresshoff P M and Werner D 1985 Competitive growth of slow growing Rhizobium japonicum against fast growing Enterobacter and Pseudomonas species at low concentrations of succinate and other substrates in dialysis culture. Arch Microbiol. 142, 223–228.

    Google Scholar 

  • Hunter W J, and Fahring C J 1980 Movement of Rhizobium and nodulation of legumes. Soil Biol. Biochem. 12, 537–542.

    Google Scholar 

  • Kandsamy D and Prasad N N 1979 Colonization by rhizobia of the seed and roots of legumes in relation to exudation of phenolics. Soil Biol. Biochem. 11, 73–75.

    Google Scholar 

  • Koshland D E 1981 Biochemistry of sensing and adaptation in a simple bacterial system. Annu. Rev. Biochem. 50, 765–782.

    Google Scholar 

  • Krupski G, Gotz R, Ober K, Pleier E and Schmidt R 1985 Structure of complex flagellar filaments in Rhizobium meliloti. J. Bacteriol. 162, 361–366.

    Google Scholar 

  • Madsen E L and Alexander M 1982 Transport of Rhizobium and Pseudomonas through soil. Soil. Sci. Soc. Am. J. 46, 557–560.

    Google Scholar 

  • Maxwell C A, Hartwig U A, Joseph C M and Phillips D A 1989 A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol. 91, 842–847.

    Google Scholar 

  • McNab R 1987 Motility and chemotaxis. pp. 732–759. In Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology. Eds. F CNeidhart etal. Eds. Am Soc. Microb., Washington, DC.

    Google Scholar 

  • Moawad H A, Ellis W R and Schmidt E L 1984 Rhizosphere response as a factor in competition among three serogroups of indigenous Rhizobium japonicum for nodulation of field-grown soybeans. Appl. Environ. Microbiol. 47, 607–612.

    Google Scholar 

  • Mulligan J T and Long S R 1985 Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc. Nat. Acad. Sci. USA 82, 6609–6613.

    Google Scholar 

  • Napoli C A and Albersheim P 1980 Infection and nodulation of clover by non-motile Rhizobium trifolii. J. Bacteriol. 141, 979–980.

    Google Scholar 

  • Parke D, Rivelli M and Ornston L N 1985 Chemotaxis to aromatic and hydroaromatic acids: comparison of Bradyrhizobium japonicum and Rhizobium trifolii. J. Bacteriol. 163, 417–422.

    Google Scholar 

  • Parke D, Ornston L N and Nester E W 1987 Chemotaxis to plant phenolic inducers of virulence genes is constitutively expressed in the absence of the Ti plasmid in Agrobacterium tumefaciens. J. Bacteriol. 169, 5336–5338.

    Google Scholar 

  • Peters N K, Frost J W and Long S R 1986 A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233, 977–980.

    Google Scholar 

  • Peters K N and Long S R 1988 Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol. 88, 396–400.

    Google Scholar 

  • Pueppke S G 1984 Adsorption of slow- and fast-growing rhizobia to soybean and cowpea roots. Plant Physiol. 75, 924–928.

    Google Scholar 

  • Rolfe B G and Gresshoff P M 1988 Genetic analysis of legume nodule initiation. Annu. Rev. Plant Physiol. 39, 297–319.

    Google Scholar 

  • Rossen L, Schearman C A, Johnston A W B and Downie J A 1986 The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodABC genes. EMBO J. 43, 3369–3373.

    Google Scholar 

  • Rovira A D 1961 Rhizobium numbers in the rhizosphere of red clover and paspalum in relation to soil treatment and numbers of bacteria and fungi. Aust. J. Agric. Res. 12, 77–83.

    Google Scholar 

  • Scher F M, Kloepper J W, Singleton C, Zaleska I and Laliberte M 1988 Colonization of soybean roots by Pseudomonas and Serratia species: relationship to bacterial motility, chemotaxis, and germination time. Phytopathol. 78, 1055–1059.

    Google Scholar 

  • Schleicher L R and Bergman K 1981 The amino acid composition of Rhizobium meliloti flagellin: occurrence of a single tryptophan residue. Biochem. Biophys. Res. Commun. 100, 1634–1641.

    Google Scholar 

  • Schmidt E L 1979 Initiation of plant root-microbe interactions. Annu. Rev. Microbiol. 33, 355–376.

    Google Scholar 

  • Schmitt R, Bamberger I, Acker G and Mayer F 1974 Feinstrukturanalyse der komplexen Geisseln von Rhizobium lupini. Arch. Microbiol. 100, 145–162.

    Google Scholar 

  • Shaw C H, Ashby A M, Brown A, Royal C and Loake G J 1988 virA and virG are the Ti-plasmid functions required for chemotaxis of Agrobacterium tumefaciens toward acetosyringone. Mol. Microbiol. 2, 413–418.

    Google Scholar 

  • Shaw C, Ashby A, Loake G, Brown A and Watson M 1988 Chemotaxis of Agrobacterium tumefaciens is the initial step in crown gall formation. Fourth Intl. Symp. on Molecular Genetics of Plant-Microbe Interactions. Acapulco, Mexico. Abstr. Ib-15.

  • Soby S and Bergman K 1983 Motility and chemotaxis of Rhizobium meliloti in soil. Appl. Environ. Microbiol. 46, 995–998.

    Google Scholar 

  • Spaink H P, Wijffelman C A, Pees E, Okker R J H and Lugtenberg B J J 1987 Rhizobium nodulation gene nodD as a determinant of host specificity. Nature 328, 337–339.

    Google Scholar 

  • Turgeon B G and Bauer W D 1985 Ultrastructure of infection-thread development during the infection of soybean by Rhizobium japonicum. Planta 163, 328–349.

    Google Scholar 

  • Vesper S J and Bauer W D 1986 Role of pili (fimbriae) in attachment of Bradyrhizobium japonicum to soybean roots. Appl. Environ. Microbiol. 52, 134–141.

    Google Scholar 

  • Wolfe A J, Conley M P, Kramer T J and Berg H C 1987 Reconstitution of signaling in bacterial chemotaxis. J. Bacteriol. 169, 1878–1885.

    Google Scholar 

  • Ziegler R J, Pierce C and Bergman K 1987 Mapping and cloning of a fla-che region of the Rhizobium meliloti chromosome. J. Bacteriol. 168, 785–790.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, W.D., Caetano-Anollés, G. Chemotaxis, induced gene expression and competitiveness in the rhizosphere. Plant Soil 129, 45–52 (1990). https://doi.org/10.1007/BF00011690

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00011690

Key words

Navigation