Skip to main content
Log in

Temperature and light: The determining factors in maximum depth distribution of aquatic macrophytes in Ontario, Canada

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In stratified lakes with high light penetration, the maximum depth at which macrophytes occur is frequently limited by temperature. At this depth a variety of species may be found. On the other hand, when the clarity of water limits the light penetration and the temperature at depth is sufficient for good plant growth, the plants occurring at greatest depth are ones that do not require photosynthetic oxygen for root growth. Such plants include the Charales, Isoetes, Utricularia and Ceratophyllum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken, S. & J. M. Gillett, 1974. The distribution of aquatic plants in selected lakes of Gatineau Park, Quebec. Can. Fld. Nat. 88: 437–448.

    Google Scholar 

  • Anderson, R. R., 1969. Temperature and rooted aquatic plants. Chesapeake Sci. 10: 157–164.

    Article  Google Scholar 

  • Barko, J. W., D. G. Hardin & M. S. Matthews, 1982. Growth and morphology of submersed freshwater macrophytes in relation to light and temperature. Can. J. Bot. 60: 877–887.

    Google Scholar 

  • Barko, J. W. & R. M. Smart, 1981. Comparative influences of light and temperature on the growth and metabolism of selected submersed fresh water macrophytes. Ecol. Monogr. 51: 219–235.

    Article  Google Scholar 

  • Boylen, C. W. & R. B. Sheldon, 1976. Submergent macrophytes: growth under winter ice cover. Science 194: 841–842.

    PubMed  Google Scholar 

  • Crawford, R. M. M., 1978. Metabolic adaptations to anoxia. In: D. D. Hook & R. M. M. Crawford (eds). Plant life in anaerobic environments. Ann Arbor Science Publishers Inc., Ann Arbor, Mich. 119–136.

    Google Scholar 

  • Dale, H. M., 1981. Hydrostatic pressure as the controlling factor in the depth distribution of Eurasian watermilfoil Myriophyllum spicatum L. Hydrobiologia 70: 239–244.

    Article  Google Scholar 

  • Dale, H. M., 1984. Hydrostatic pressure and aquatic plant growth: a laboratory study. Hydrobiologia 111: 193–200.

    Article  Google Scholar 

  • Dale, H. M. & T. J. Gillespie, 1977. The influence of submersed aquatic plants on temperature gradients in shallow water bodies. Can. J. Bot. 55: 2216–2225.

    Google Scholar 

  • Hitchin, G. G., I. Wile, G. E. Miller & N. D. Yan, 1984. Macrophyte data from 46 southern Ontario soft-water lakes of varying pH. Ont. Minist. Envir., Wat. Resour. Branch, Data Rep. DR 84/2. 26 p. + Appendix, 46 figs. & 46 tables.

  • Hutchinson, G. E., 1975. A treatise on limnology, 3. Limnological Botany. John Wiley & Sons, Toronto, 660 pp.

    Google Scholar 

  • Karrfalt, E. E., 1977. Substrate penetration by the corm of Isoetes. Am. Fern J. 67: 1–4.

    Article  Google Scholar 

  • Moeller, R. E., 1980. The temperature-determined growing season of a submerged hydrophyte: tissue chemistry and biomass turnover of Ultricularia purpurea. Freshwat. Biol. 10: 391–400.

    Article  Google Scholar 

  • Nicholson, S. A., R. A. Levey & P. R. Clute, 1974. Macrophytesediment relationships in Chautauqua Lake. Verh. int. Ver. Limnol. 19: 2758–2764.

    Google Scholar 

  • Paolillo, D. J., 1963. The developmental anatomy of Isoetes. Ill. biol. Monogr. 31, University of Illinois Press, Urbana. 130 p.

    Google Scholar 

  • Reid, R. A., R. Girard & B. Locke, 1983. Temperature profiles on the Muskoka-Haliburton Lakes (1976–1982). Ont. Minist. Envir. Data Rep. 83/4. 6 pp. + 56 figs.

  • Sheldon, R. B. & C. W. Boylen, 1977. Maximum depth inhabited by aquatic vascular plants. Am. Midl. Nat. 97: 248–254.

    Article  Google Scholar 

  • Singer, R., A. A. Roberts & C. N. Boylen, 1983. The macrophytic community of an acid lake in Adirondack (New York, U.S.A.): A new depth record for aquatic angiosperms. Aquat. Bot. 16: 49–57.

    Article  Google Scholar 

  • Smith, R. D., W. C. Dennison & R. S. Alberte, 1984. Role of Seagrass photosynthesis in root aerobic processes. Pl. Physiol. 74: 1055–1058.

    Article  Google Scholar 

  • Spence, D. H. N., 1981. The zonation of plants in freshwater lakes. Adv. ecol. Res. 12: 37–125.

    Article  Google Scholar 

  • Spence, D. H. M. & H. M. Dale, 1978. Variations in the shallow water form of Potamogeton richardsonii induced by some environmental factors. Freshwat. Biol. 8: 251–268.

    Article  Google Scholar 

  • Wetzel, R. G., 1975. Limnology. W.B. Saunders Co., Toronto, 743 pp.

    Google Scholar 

  • Wile, I. & G. E. Miller, 1983. The macrophyte flora of 46 acidified and acid-sensitive soft-water lakes in Ontario. Limnol. Sect., Ont. Minist. Envir., 34 pp.

  • Wilson, L. R., 1941. The larger aquatic vegetation of Trout Lake, Vilas County, Wisconsin. Trans. Wisc. Acad. Arts, Sci. Lett. 33: 133–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dale, H.M. Temperature and light: The determining factors in maximum depth distribution of aquatic macrophytes in Ontario, Canada. Hydrobiologia 133, 73–77 (1986). https://doi.org/10.1007/BF00010804

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00010804

Keywords

Navigation