Skip to main content
Log in

The geochemistry of methane in Lake Fryxell, an amictic, permanently ice-covered, antarctic lake

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The abundance and distribution of dissolved CH4 were determined from 1987–1990 in Lake Fryxell, Antarctica, an amictic, permanently ice-covered lake in which solute movement is controlled by diffusion. CH4 concentrations were < 1 υM in the upper oxic waters, but increased below the oxycline to 936 μM at 18 m. Sediment CH4 was 1100 μmol (1 sed)−1 in the 0–5 cm zone. Upward flux from the sediment was the source of the CH4, NH4 +, and DOC in the water column; CH4 was 27% of the DOC+CH4 carbon at 18 m. Incubations with surficial sediments indicated that H14CO3 reduction was 0.4 μmol (1 sed)−1 day−1 or 4× the rate of acetate fermentation to CH4. There was no measurable CH4 production in the water column. However, depth profiles of CH4, NH4, and DIC normalized to bottom water concentrations demonstrated that a significant CH4 sink was evident in the anoxic, sulfate-containing zone of the water column (10–18 m). The δ13CH4 in this zone decreased from −72 % at 18 m to −76% at 12 m, indicating that the consumption mechanism did not result in an isotopic enrichment of 13CH4. In contrast, δ13CH4 increased to −55 % at 9 m due to aerobic oxidation, though this was a minor aspect of the CH4 cycle. The water column CH4 profile was modeled by coupling diffusive flux with a first order consumption term; the best-fit rate constant for anaerobic CH4 consumption was 0.012 yr−1. On a total carbon basis, CH4 consumption in the anoxic water column exerted a major effect on the flux of carbonaceous material from the underlying sediments and serves to exemplify the importance of CH4 to carbon cycling in Lake Fryxell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken GR (1991) The nature of nonvolatile organic acids in antarctic lakes. Ph.D. Dissertation, Colorado School of Mines

  • Aiken GR, McKnight DM, Wershaw R & Miller L (1991) Evidence for the diffusion of aquatic fulvic acid from the sediments of Lake Fryxell, Antarctica. In: Baker RA (Ed) Organic Substances and Sediments in Water. Vol. 1. Humics and Soils (pp 75–88). Lewis Publishers, Chelsea, MI

    Google Scholar 

  • Alperin MJ, Reeburgh WS & Whiticar MJ (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochem. Cycles 2: 279–288

    Article  Google Scholar 

  • Berner RA (1980) Early Diagenesis: A Theoretical Approach. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Burton HR (1980) Methane in a saline antarctic lake. In: Trudinger PA & Walter MR (Ed) Biogeochemistry of Ancient and Modern Environments (pp 243–251). Springer-Verlag, New York, NY

    Google Scholar 

  • Burton HR (1981) Chemistry, physics, and evolution of Antarctic saline lakes. Hydrobiol. 82: 339–362

    Article  Google Scholar 

  • Claypool GE & Kaplan IR (1974) The origin and distribution of methane in marine sediments. In: Kaplan IR (Ed) Natural Gases In Marine Sediments (pp 99–139). Plenum Inc., New York, NY

    Google Scholar 

  • Claypool GE & Kvenvolden KA (1983) Methane and other hydrocarbon gases in marine sediment. Ann. Rev. Earth and Planet. Sci. 11: 299–327

    Article  Google Scholar 

  • Coleman DD, Risatti JB & Schoell M (1981) Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochim. Cosmochim. Acta 45: 1033–1037

    Article  Google Scholar 

  • Craig H, Wharton RA & McKay CP (1992) Oxygen supersaturation in ice-covered antarctic lakes: Biological versus physical contributions. Science 255: 318–321

    Article  Google Scholar 

  • Culbertson CW, Zehnder AJ & Oremland RS (1981) Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures. Appl. Environ. Microbiol. 41: 396–403

    Google Scholar 

  • Downes MT, Howard-Williams C & Vincent WF (1986) Sources of organic nitrogen, phosphorous and carbon in antarctic streams. Hydrobiol. 134: 215–225

    Article  Google Scholar 

  • Ellis-Evans JC (1984) Methane in maritime antarctic freshwater lakes. Polar Biol. 3: 63–71

    Article  Google Scholar 

  • Franzmann PD, Roberts NJ, Mancuso CA, Burton HR & McMeekin TA (1991) Methane production in meromictic Ace Lake, Antarctica. Hydrobiol. 210: 191–201

    Article  Google Scholar 

  • Green TGA (1985) Dry valley terrestrial plant communities: The problem of production and growth. New Zealand Antarctic Record 6: 40–44

    Google Scholar 

  • Green WJ, Gardner TJ, Ferdelman TG, Angle MP, Varner LC & Nixon P (1989) Geochemical processes in the Lake Fryxell basin (Victoria Land, Antarctica). Hydrobiol. 172: 129–148

    Article  Google Scholar 

  • Gunsalus RP, Romesser JA & Wolfe RS (1978) Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochem. 17: 2374–2377

    Article  Google Scholar 

  • Howard-Williams C & Vincent WF (1989) Microbial communities in southern Victoria Land streams (Antarctica) I. Photosynthesis. Hydrobiol. 172: 27–38

    Google Scholar 

  • Howes BL & Smith RL (1990) Sulfur cycling in a permanently ice covered amictic antarctic lake, Lake Fryxell. Ant. J. US 25: 230–233

    Google Scholar 

  • Ingvorsen K, Zeikus JG & Brock TD (1981) Dynamics of bacterial sulfate reduction in a eutrophic lake. Appl. Environ. Microbiol. 42: 1019–1036

    Google Scholar 

  • Iversen N & Jörgensen BB (1985) Anaerobic methane oxidation rates at the sulfatemethane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30: 944–955

    Google Scholar 

  • Iversen N, Oremland RS & Klug MJ (1987) Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation. Limnol. Oceanogr. 32: 804–814

    Google Scholar 

  • Javor B (1989) Hypersaline Environments. Springer-Verlag, New York, NY

    Google Scholar 

  • King GM (1990) Regulation by light of methane emissions from a wetland. Nature 345: 513–515

    Article  Google Scholar 

  • Kuivila KM, Murray JW, Devol AH, Lidstrom ME & Reimers CE (1988) Methane cycling in the sediments of Lake Washington. Limnol. Oceanogr. 33: 571–581

    Google Scholar 

  • Lawrence MJF & Hendy CH (1985) Water column and sediment characteristics of Lake Fryxell, Taylor Valley, Antarctica. New Zealand J. Geol. Geophys. 28: 543–552

    Google Scholar 

  • Lawrence MJF & Hendy CH (1989) Carbonate deposition and Ross Sea ice advance, Fryxell basin, Taylor Valley, Antarctica. New Zealand J. Geol. Geophys. 32: 267–277

    Google Scholar 

  • Lerman A (1979) Geochemical Processes: Water and Sediment Environments. John Wiley & Sons, New York, NY

    Google Scholar 

  • Li Y & Gregory S (1974) Diffusion of ions in sea water and in deep–sea sediments. Geochim. Cosmochim. Acta 38: 703–714

    Article  Google Scholar 

  • Martens CS & Berner RA (1977) Interstitial water chemistry of anoxic Long Island Sound sediments. I. Dissolved gases. Limnol. Oceanogr. 22: 10–25

    Google Scholar 

  • Martens CS, Blair NE, Green CD & DesMarais DJ (1986) Seasonal variations in the stable carbon isotope signature of biogenic methane in a coastal sediment. Science 233: 1300–1303

    Article  Google Scholar 

  • Matsubaya O, Sakai H, Torii T, Burton H & Kerry K (1979) Antarctic saline lakes-stable isotopic ratios, chemical compositions and evolution. Geochim. Cosmochim. Acta 43: 7–25

    Article  Google Scholar 

  • Matsumoto GI (1989) Biogeochemical study of organic substances in antarctic lakes. Hydrobiol. 172: 265–289

    Article  Google Scholar 

  • Matsumoto GI, Watanuki K & Torii T (1989) Vertical distribution of organic constituents in an antarctic lake: Lake Fryxell. Hydrobiol. 172: 291–303

    Article  Google Scholar 

  • McKnight DM, Aiken GR & Smith RL (1991) Aquatic fulvic acids in microbially-based ecosystems: Results from two desert lakes in Antarctica. Limnol. Oceanogr. 36: 998–1006

    Google Scholar 

  • Molongoski JJ & Klug MJ (1980) Anaerobic metabolism of particulate organic matter in the sediments of a hypereutrophic lake. Freshwat. Biol. 10: 507–518

    Article  Google Scholar 

  • Oremland RS & DesMarais DJ (1983) Distribution, abundance, and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: An alkaline, meromictic lake. Geochim. Cosmochim. Acta 47: 2107–2114

    Article  Google Scholar 

  • Oremland RS, Miller LG & Whiticar MJ (1987) Sources and flux of natural gases from Mono Lake, California. Geochim. Cosmochim. Acta 51: 2915–2929

    Article  Google Scholar 

  • Priscu JC, Priscu LR, Vincent WF & Howard-Williams C (1987) Photosynthate distribution by microplankton in permanently ice-covered antarctic desert lakes. Limnol. Oceanogr. 32: 260–270

    Article  Google Scholar 

  • Priscu JC, Vincent WF & Howard-Williams C (1988) Inorganic nitrogen uptake and regeneration in perennially ice-covered Lakes Fryxell and Vanda, Antarctica. J. Plank. Res. 11: 335–351

    Google Scholar 

  • Reeburgh WS (1980) Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments. Earth Planet. Sci. Lett. 47: 345–352

    Article  Google Scholar 

  • Reeburgh WS, Ward BB, Whalen SC, Sandbeck KA, Kilpatrick KA & Kerkhof LJ, (1991) Black Sea methane geochemistry. Deep Sea Res. 38: S1189–S1210

  • Rudd JWH & Hamilton RD (1978) Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnol Oceanogr. 23: 337–348

    Google Scholar 

  • Scheiner D (1976) Determination of ammonia and Kjeldahl nitrogen by the indophenol method. Water Res. 10: 31–36

    Article  Google Scholar 

  • Smith RL & Howes BL (1990) Bacterial biomass and heterotrophic activity in the water column of an amictic antarctic lake. Ant. J. US 25: 233–235

    Google Scholar 

  • Smith RL & Klug MJ (1981) Reduction of sulfur compounds in the sediments of a eutrophic lake basin. Appl. Environ. Microbiol. 41: 1230–1237

    Google Scholar 

  • Smith RL & Klug MJ (1987) Flowthrough reactor flasks for study of microbial metabolism in sediments. Appl. Environ. Microbiol. 53: 371–374

    Google Scholar 

  • Tabatabai MA (1974) Determination of sulfate in water samples. Sulphur Inst. J. 10: 11–13

    Google Scholar 

  • Torii T & Yamagata N (1981) Limnological studies of saline lakes in the Dry Valleys. In: McGinnis LD (Ed) Dry Valley Project (pp 141–159). Amer. Geophys. Union, Washington, DC

    Google Scholar 

  • Torii T, Yamagata N, Nakaya S, Murata S, Hashimoto T, Matsubaya O & Sakai H (1975) Geochemical aspects of the McMurdo saline lakes with special emphasis on the distribution of nutrient matters. In: Torii T (Ed) Geochemical and Geophysical Studies of Dry Valleys, Victoria Land in Antarctica (pp 5–29). National Institute of Polar Research Tokyo, Japan

    Google Scholar 

  • Vincent WF (1981) Production strategies in antarctic inland waters: Phytoplankton ecophysiology in a permanently ice-covered lake. Ecol. 62: 1215–1224

    Article  Google Scholar 

  • Waguri O (1976) Isolation of microorganisms from salt lakes in the Dry Valley, Antarctica, and their living environment. Antarct. Rec. 57: 80–96

    Google Scholar 

  • Ward BB, Kilpatrick KA, Novelli PC & Scranton MI (1987) Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters. Nature 327: 226–229

    Article  Google Scholar 

  • Whalen JK, Oremland R, Tarafa M, Smith R, Howarth R & Lee C (1986) Evidence for sulfate-reducing and methane-producing microorganisms in sediments from sites 618, 619, and 622. In: Bouma AH, Coleman JM, Meyer AW et al.(Eds) Init. Repts. Deep Sea Drill. Prog., 96(pp 767–775). US Govt. Printing Office, Wasington, DC

    Google Scholar 

  • Wharton RA, McKay CP, Mancinelli RL & Simmons GM (1987) Perennial N2 supersaturation in an antarctic lake. Nature 325: 343–345

    Article  Google Scholar 

  • Wharton RA, McKay CP, Simmons GM & Parker BC (1986) Oxygen budget of a perennially ice-covered antarctic lake. Limnol. Oceanogr. 31: 437–443

    Google Scholar 

  • Wiesenburg DA, Brooks JM & Bernard BB (1985) Biogenic hydrocarbon gases and sulfate reduction in the Orca Basin brine. Geochim. Cosmochim. Acta 49: 2069–2080

    Article  Google Scholar 

  • Wilson AT (1964) Evidence from chemical diffusion of a climatic change in the McMurdo Dry Valleys 1,200 years ago. Nature 201: 176–177

    Article  Google Scholar 

  • Winfrey MR, Nelson DR, Klevickis SC & Zeikus JG (1977) Association of hydrogen metabolism with methanogenesis in Lake Mendota sediments. Appl. Environ. Microbiol. 33: 312–318

    Google Scholar 

  • Winfrey MR & Zeikus JG (1979) Microbial methanogenesis and acetate metabolism in a meromictic lake. Appl. Environ. Microbiol. 37: 213–221

    Google Scholar 

  • Yarrington MR & Wynn-Williams DD (1985) Methanogenesis and the anaerobic microbiology of a wet moss community at Signy Island. In: Siefried WR, Condy PR & Laws RM (Eds) Antarctic Nutrient Cycles and Food Webs (pp 229–233). Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, R.L., Miller, L.G. & Howes, B.L. The geochemistry of methane in Lake Fryxell, an amictic, permanently ice-covered, antarctic lake. Biogeochemistry 21, 95–115 (1993). https://doi.org/10.1007/BF00000873

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00000873

Key words

Navigation