Skip to main content

The Development of Multisensory Integration at the Neuronal Level

  • Chapter
  • First Online:
Advances of Multisensory Integration in the Brain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1437))

Abstract

Multisensory integration is a fundamental function of the brain. In the typical adult, multisensory neurons’ response to paired multisensory (e.g., audiovisual) cues is significantly more robust than the corresponding best unisensory response in many brain regions. Synthesizing sensory signals from multiple modalities can speed up sensory processing and improve the salience of outside events or objects. Despite its significance, multisensory integration is testified to be not a neonatal feature of the brain. Neurons’ ability to effectively combine multisensory information does not occur rapidly but develops gradually during early postnatal life (for cats, 4–12 weeks required). Multisensory experience is critical for this developing process. If animals were restricted from sensing normal visual scenes or sounds (deprived of the relevant multisensory experience), the development of the corresponding integrative ability could be blocked until the appropriate multisensory experience is obtained. This section summarizes the extant literature on the development of multisensory integration (mainly using cat superior colliculus as a model), sensory-deprivation-induced cross-modal plasticity, and how sensory experience (sensory exposure and perceptual learning) leads to the plastic change and modification of neural circuits in cortical and subcortical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarado JC, Vaughan JW, Stanford TR, Stein BE (2007) Multisensory versus unisensory integration: contrasting modes in the superior colliculus. J Neurophysiol 97:3193–3205

    Article  PubMed  Google Scholar 

  • Alvarado JC, Stanford TR, Rowland BA, Vaughan JW, Stein BE (2009) Multisensory integration in the superior colliculus requires synergy among corticocollicular inputs. J Neurosci 29:6580–6592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson CA, Wiggins IM, Kitterick PT, Hartley DEH (2017) Adaptive benefit of cross-modal plasticity following cochlear implantation in deaf adults. Proc Natl Acad Sci U S A 114:10256–10261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atilgan H, Town SM, Wood KC, Jones GP, Maddox RK, Lee AKC, Bizley JK (2018) Integration of visual information in auditory cortex promotes auditory scene analysis through multisensory binding. Neuron 97:640–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basso MA, May PJ (2017) Circuits for action and cognition: a view from the superior colliculus. Annu Rev Vis Sci 3:197–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Bavelier D, Neville HJ (2002) Cross-modal plasticity: where and how? Nat Rev Neurosci 3:443–452

    Article  CAS  PubMed  Google Scholar 

  • Bavelier D, Tomann A, Hutton C, Mitchell T, Corina D, Liu G, Neville H (2000) Visual attention to the periphery is enhanced in congenitally deaf individuals. J Neurosci 20:RC93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blankenship AG, Feller MB (2010) Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci 11:18–29

    Article  CAS  PubMed  Google Scholar 

  • Bolognini N, Rasi F, Coccia M, Ladavas E (2005) Visual search improvement in hemianopic patients after audio-visual stimulation. Brain 128:2830–2842

    Article  PubMed  Google Scholar 

  • Bosworth RG, Dobkins KR (2002) The effects of spatial attention on motion processing in deaf signers, hearing signers, and hearing nonsigners. Brain Cogn 49:152–169

    Article  PubMed  Google Scholar 

  • Brandwein AB, Foxe JJ, Butler JS, Russo NN, Altschuler TS, Gomes H, Molholm S (2013) The development of multisensory integration in high-functioning autism: high-density electrical mapping and psychophysical measures reveal impairments in the processing of audiovisual inputs. Cereb Cortex 23:1329–1341

    Article  PubMed  Google Scholar 

  • Campbell J, Sharma A (2014) Cross-modal re-organization in adults with early stage hearing loss. PLoS One 9:e90594

    Article  PubMed  PubMed Central  Google Scholar 

  • Campi KL, Bales KL, Grunewald R, Krubitzer L (2010) Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 20:89–108

    Article  PubMed  Google Scholar 

  • Cappe C, Barone P (2005) Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. Eur J Neurosci 22:2886–2902

    Article  PubMed  Google Scholar 

  • Cappe C, Thelen A, Romei V, Thut G, Murray MM (2012) Looming signals reveal synergistic principles of multisensory integration. J Neurosci 32:1171–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carriere BN, Royal DW, Perrault TJ, Morrison SP, Vaughan JW, Stein BE, Wallace MT (2007) Visual deprivation alters the development of cortical multisensory integration. J Neurophysiol 98:2858–2867

    Article  PubMed  Google Scholar 

  • Catalano SM, Shatz CJ (1998) Activity-dependent cortical target selection by thalamic axons. Science 281:559–562

    Article  CAS  PubMed  Google Scholar 

  • Champoux F, Lepore F, Gagne JP, Theoret H (2009) Visual stimuli can impair auditory processing in cochlear implant users. Neuropsychologia 47:17–22

    Article  PubMed  Google Scholar 

  • Chandrasekaran C, Lemus L, Ghazanfar AA (2013) Dynamic faces speed up the onset of auditory cortical spiking responses during vocal detection. Proc Natl Acad Sci U S A 110:E4668–E4677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SP, Bhattacharya J, Pershing S (2017) Association of vision loss with cognition in older adults. JAMA Ophthalmol 135:963–970

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi I, Lee JY, Lee SH (2018) Bottom-up and top-down modulation of multisensory integration. Curr Opin Neurobiol 52:115–122

    Article  CAS  PubMed  Google Scholar 

  • De Niear MA, Gupta PB, Baum SH, Wallace MT (2018) Perceptual training enhances temporal acuity for multisensory speech. Neurobiol Learn Mem 147:9–17

    Article  PubMed  Google Scholar 

  • Diederich A, Colonius H (2004) Bimodal and trimodal multisensory enhancement: effects of stimulus onset and intensity on reaction time. Percept Psychophys 66:1388–1404

    Article  PubMed  Google Scholar 

  • Driver J, Noesselt T (2008) Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron 57:11–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  CAS  PubMed  Google Scholar 

  • Falchier A, Clavagnier S, Barone P, Kennedy H (2002) Anatomical evidence of multimodal integration in primate striate cortex. J Neurosci 22:5749–5759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falchier A, Schroeder CE, Hackett TA, Lakatos P, Nascimento-Silva S, Ulbert I, Karmos G, Smiley JF (2010) Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey. Cereb Cortex 20:1529–1538

    Article  PubMed  Google Scholar 

  • Feng W, Stormer VS, Martinez A, McDonald JJ, Hillyard SA (2014) Sounds activate visual cortex and improve visual discrimination. J Neurosci 34:9817–9824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE (2011) Neural correlates of reliability-based cue weighting during multisensory integration. Nat Neurosci 15:146–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Finney EM, Fine I, Dobkins KR (2001) Visual stimuli activate auditory cortex in the deaf. Nat Neurosci 4:1171–1173

    Article  CAS  PubMed  Google Scholar 

  • Finney EM, Clementz BA, Hickok G, Dobkins KR (2003) Visual stimuli activate auditory cortex in deaf subjects: evidence from MEG. Neuroreport 14:1425–1427

    Article  PubMed  Google Scholar 

  • Foxe JJ, Molholm S, Del Bene VA, Frey HP, Russo NN, Blanco D, Saint-Amour D, Ross LA (2015) Severe multisensory speech integration deficits in high-functioning school-aged children with autism Spectrum disorder (ASD) and their resolution during early adolescence. Cereb Cortex 25:298–312

    Article  PubMed  Google Scholar 

  • Frassinetti F, Pavani F, Ladavas E (2002) Acoustical vision of neglected stimuli: interaction among spatially converging audiovisual inputs in neglect patients. J Cogn Neurosci 14:62–69

    Article  PubMed  Google Scholar 

  • Fu QJ, Shannon RV, Wang X (1998) Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing. J Acoust Soc Am 104:3586–3596

    Article  CAS  PubMed  Google Scholar 

  • Fu KM, Johnston TA, Shah AS, Arnold L, Smiley J, Hackett TA, Garraghty PE, Schroeder CE (2003) Auditory cortical neurons respond to somatosensory stimulation. J Neurosci 23:7510–7515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghazanfar AA, Schroeder CE (2006) Is neocortex essentially multisensory? Trends Cogn Sci 10:278–285

    Article  PubMed  Google Scholar 

  • Glick H, Sharma A (2017) Cross-modal plasticity in developmental and age-related hearing loss: clinical implications. Hear Res 343:191–201

    Article  PubMed  Google Scholar 

  • Grantyn A, Grantyn R (1982) Axonal patterns and sites of termination of cat superior colliculus neurons projecting in the tecto-bulbo-spinal tract. Exp Brain Res 46:243–256

    Article  CAS  PubMed  Google Scholar 

  • Grasso PA, Ladavas E, Bertini C (2016) Compensatory recovery after multisensory stimulation in hemianopic patients: behavioral and neurophysiological components. Front Syst Neurosci 10:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Angelaki DE, Deangelis GC (2008) Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci 11:1201–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guitton D, Munoz DP (1991) Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. I. Identification, localization, and effects of behavior on sensory responses. J Neurophysiol 66:1605–1623

    Article  CAS  PubMed  Google Scholar 

  • Hairston WD, Laurienti PJ, Mishra G, Burdette JH, Wallace MT (2003) Multisensory enhancement of localization under conditions of induced myopia. Exp Brain Res 152:404–408

    Article  PubMed  Google Scholar 

  • Hairston WD, Burdette JH, Flowers DL, Wood FB, Wallace MT (2005) Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Exp Brain Res 166:474–480

    Article  PubMed  Google Scholar 

  • Han X, Xu J, Chang S, Keniston L, Yu L (2021) Multisensory-guided associative learning enhances multisensory representation in primary auditory cortex. Cereb Cortex 32:1040–1054

    Google Scholar 

  • Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579

    Article  PubMed  Google Scholar 

  • Hildebrandt H, Giesselmann H, Sachsenheimer W (1999) Visual search and visual target detection in patients with infarctions of the left or right posterior or the right middle brain artery. J Clin Exp Neuropsychol 21:94–107

    Article  CAS  PubMed  Google Scholar 

  • Holmes NP (2009) The principle of inverse effectiveness in multisensory integration: some statistical considerations. Brain Topogr 21:168–176

    Article  PubMed  Google Scholar 

  • Holt RF, Svirsky MA (2008) An exploratory look at pediatric cochlear implantation: is earliest always best? Ear Hear 29:492–511

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim LA, Mesik L, Ji XY, Fang Q, Li HF, Li YT, Zingg B, Zhang LI, Tao HW (2016) Cross-modality sharpening of visual cortical processing through layer-1-mediated inhibition and disinhibition. Neuron 89:1031–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaiah A, Vongpaisal T, King AJ, Hartley DE (2014) Multisensory training improves auditory spatial processing following bilateral cochlear implantation. J Neurosci 34:11119–11130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iurilli G, Ghezzi D, Olcese U, Lassi G, Nazzaro C, Tonini R, Tucci V, Benfenati F, Medini P (2012) Sound-driven synaptic inhibition in primary visual cortex. Neuron 73:814–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs RA, Xu C (2019) Can multisensory training aid visual learning? A computational investigation. J Vis 19:1

    Article  PubMed  Google Scholar 

  • Jay MF, Sparks DL (1987a) Sensorimotor integration in the primate superior colliculus. I. Motor convergence. J Neurophysiol 57:22–34

    Article  CAS  PubMed  Google Scholar 

  • Jay MF, Sparks DL (1987b) Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. J Neurophysiol 57:35–55

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Stein BE (2003) Cortex controls multisensory depression in superior colliculus. J Neurophysiol 90:2123–2135

    Article  PubMed  Google Scholar 

  • Jiang W, Jiang H, Stein BE (2006) Neonatal cortical ablation disrupts multisensory development in superior colliculus. J Neurophysiol 95:1380–1396

    Article  PubMed  Google Scholar 

  • Jiang W, Jiang H, Rowland BA, Stein BE (2007) Multisensory orientation behavior is disrupted by neonatal cortical ablation. J Neurophysiol 97:557–562

    Article  PubMed  Google Scholar 

  • Jiang H, Stein BE, McHaffie JG (2015) Multisensory training reverses midbrain lesion-induced changes and ameliorates haemianopia. Nat Commun 6:7263

    Article  PubMed  Google Scholar 

  • Kadunce DC, Vaughan JW, Wallace MT, Benedek G, Stein BE (1997) Mechanisms of within- and cross-modality suppression in the superior colliculus. J Neurophysiol 78:2834–2847

    Article  CAS  PubMed  Google Scholar 

  • Kao CQ, McHaffie JG, Meredith MA, Stein BE (1994) Functional development of a central visual map in cat. J Neurophysiol 72:266–272

    Article  CAS  PubMed  Google Scholar 

  • Kayser C, Logothetis NK (2007) Do early sensory cortices integrate cross-modal information? Brain Struct Funct 212:121–132

    Article  PubMed  Google Scholar 

  • Kayser SJ, Philiastides MG, Kayser C (2017) Sounds facilitate visual motion discrimination via the enhancement of late occipital visual representations. NeuroImage 148:31–41

    Article  PubMed  Google Scholar 

  • Khazipov R, Luhmann HJ (2006) Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci 29:414–418

    Article  CAS  PubMed  Google Scholar 

  • King AJ (1999) Sensory experience and the formation of a computational map of auditory space in the brain. BioEssays 21:900–911

    Article  CAS  PubMed  Google Scholar 

  • King AJ, Schnupp JW, Carlile S, Smith AL, Thompson ID (1996) The development of topographically-aligned maps of visual and auditory space in the superior colliculus. Prog Brain Res 112:335–350

    Article  CAS  PubMed  Google Scholar 

  • Knopfel T, Sweeney Y, Radulescu CI, Zabouri N, Doostdar N, Clopath C, Barnes SJ (2019) Audio-visual experience strengthens multisensory assemblies in adult mouse visual cortex. Nat Commun 10:5684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kral A, Sharma A (2012) Developmental neuroplasticity after cochlear implantation. Trends Neurosci 35:111–122

    Article  CAS  PubMed  Google Scholar 

  • Kral A, Dorman MF, Wilson BS (2019) Neuronal development of hearing and language: cochlear implants and critical periods. Annu Rev Neurosci 42:47–65

    Article  CAS  PubMed  Google Scholar 

  • Krueger Fister J, Stevenson RA, Nidiffer AR, Barnett ZP, Wallace MT (2016) Stimulus intensity modulates multisensory temporal processing. Neuropsychologia 88:92–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Lessard N, Pare M, Lepore F, Lassonde M (1998) Early-blind human subjects localize sound sources better than sighted subjects. Nature 395:278–280

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG, Meredith MA, Kral A (2010) Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat Neurosci 13:1421–1427

    Article  CAS  PubMed  Google Scholar 

  • May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321–378

    Article  PubMed  Google Scholar 

  • McDonald JJ, Teder-Salejarvi WA, Hillyard SA (2000) Involuntary orienting to sound improves visual perception. Nature 407:906–908

    Article  CAS  PubMed  Google Scholar 

  • Meredith MA, Stein BE (1996) Spatial determinants of multisensory integration in cat superior colliculus neurons. J Neurophysiol 75:1843–1857

    Article  CAS  PubMed  Google Scholar 

  • Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 7:3215–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith MA, Allman BL, Keniston LP, Clemo HR (2009) Auditory influences on non-auditory cortices. Hear Res 258:64–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Mezzera C, Lopez-Bendito G (2016) Cross-modal plasticity in sensory deprived animal models: from the thalamocortical development point of view. J Chem Neuroanat 75:32–40

    Article  PubMed  Google Scholar 

  • Miller RL, Pluta SR, Stein BE, Rowland BA (2015) Relative unisensory strength and timing predict their multisensory product. J Neurosci 35:5213–5220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz DP, Wurtz RH (1993a) Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. J Neurophysiol 70:576–589

    Article  CAS  PubMed  Google Scholar 

  • Munoz DP, Wurtz RH (1993b) Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J Neurophysiol 70:559–575

    Article  CAS  PubMed  Google Scholar 

  • Murphy J, Summerfield AQ, O’Donoghue GM, Moore DR (2011) Spatial hearing of normally hearing and cochlear implanted children. Int J Pediatr Otorhinolaryngol 75:489–494

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray MM, Lewkowicz DJ, Amedi A, Wallace MT (2016) Multisensory processes: a balancing act across the lifespan. Trends Neurosci 39:567–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mushtaq F, Wiggins IM, Kitterick PT, Anderson CA, Hartley DEH (2020) The benefit of cross-modal reorganization on speech perception in pediatric Cochlear implant recipients revealed using functional near-infrared spectroscopy. Front Hum Neurosci 14:308

    Article  PubMed  PubMed Central  Google Scholar 

  • Neville HJ, Lawson D (1987) Attention to central and peripheral visual space in a movement detection task. III. Separate effects of auditory deprivation and acquisition of a visual language. Brain Res 405:284–294

    Article  CAS  PubMed  Google Scholar 

  • Nidiffer AR, Stevenson RA, Krueger Fister J, Barnett ZP, Wallace MT (2016) Interactions between space and effectiveness in human multisensory performance. Neuropsychologia 88:83–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishimura H, Hashikawa K, Doi K, Iwaki T, Watanabe Y, Kusuoka H, Nishimura T, Kubo T (1999) Sign language ‘heard’ in the auditory cortex. Nature 397:116

    Article  CAS  PubMed  Google Scholar 

  • Olcese U, Iurilli G, Medini P (2013) Cellular and synaptic architecture of multisensory integration in the mouse neocortex. Neuron 79:579–593

    Article  CAS  PubMed  Google Scholar 

  • Passamonti C, Bertini C, Ladavas E (2009) Audio-visual stimulation improves oculomotor patterns in patients with hemianopia. Neuropsychologia 47:546–555

    Article  PubMed  Google Scholar 

  • Perrault TJ Jr, Vaughan JW, Stein BE, Wallace MT (2003) Neuron-specific response characteristics predict the magnitude of multisensory integration. J Neurophysiol 90:4022–4026

    Article  PubMed  Google Scholar 

  • Proulx MJ, Brown DJ, Pasqualotto A, Meijer P (2014) Multisensory perceptual learning and sensory substitution. Neurosci Biobehav Rev 41:16–25

    Article  PubMed  Google Scholar 

  • Putzar L, Goerendt I, Lange K, Rosler F, Roder B (2007) Early visual deprivation impairs multisensory interactions in humans. Nat Neurosci 10:1243–1245

    Article  CAS  PubMed  Google Scholar 

  • Putzar L, Hotting K, Roder B (2010) Early visual deprivation affects the development of face recognition and of audio-visual speech perception. Restor Neurol Neurosci 28:251–257

    PubMed  Google Scholar 

  • Rauschecker JP (1995) Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci 18:36–43

    Article  CAS  PubMed  Google Scholar 

  • Roder B, Teder-Salejarvi W, Sterr A, Rosler F, Hillyard SA, Neville HJ (1999) Improved auditory spatial tuning in blind humans. Nature 400:162–166

    Article  CAS  PubMed  Google Scholar 

  • Rowland BA, Quessy S, Stanford TR, Stein BE (2007) Multisensory integration shortens physiological response latencies. J Neurosci 27:5879–5884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP, Dold G, Hallett M (1996) Activation of the primary visual cortex by braille reading in blind subjects. Nature 380:526–528

    Article  CAS  PubMed  Google Scholar 

  • Sandmann P, Dillier N, Eichele T, Meyer M, Kegel A, Pascual-Marqui RD, Marcar VL, Jancke L, Debener S (2012) Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users. Brain 135:555–568

    Article  PubMed  Google Scholar 

  • Sparks DL (1986) Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol Rev 66:118–171

    Article  CAS  PubMed  Google Scholar 

  • Stehberg J, Dang PT, Frostig RD (2014) Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex. Front Neuroanat 8:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein BE, Clamann HP (1981) Control of pinna movements and sensorimotor register in cat superior colliculus. Brain Behav Evol 19:180–192

    Article  CAS  PubMed  Google Scholar 

  • Stein B, Meredith A (1993) The merging of the senses. J Cogn Neurosci 5:373–374

    Article  Google Scholar 

  • Stein BE, Labos E, Kruger L (1973) Sequence of changes in properties of neurons of superior colliculus of the kitten during maturation. J Neurophysiol 36:667–679

    Article  CAS  PubMed  Google Scholar 

  • Stein BE, Wallace MW, Stanford TR, Jiang W (2002) Cortex governs multisensory integration in the midbrain. Neuroscientist 8:306–314

    Article  PubMed  Google Scholar 

  • Stein BE, Stanford TR, Rowland BA (2014) Development of multisensory integration from the perspective of the individual neuron. Nat Rev Neurosci 15:520–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson RA, Siemann JK, Schneider BC, Eberly HE, Woynaroski TG, Camarata SM, Wallace MT (2014) Multisensory temporal integration in autism spectrum disorders. J Neurosci 34:691–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tant ML, Cornelissen FW, Kooijman AC, Brouwer WH (2002) Hemianopic visual field defects elicit hemianopic scanning. Vis Res 42:1339–1348

    Article  CAS  PubMed  Google Scholar 

  • Targher S, Occelli V, Zampini M (2012) Audiovisual integration in low vision individuals. Neuropsychologia 50:576–582

    Article  PubMed  Google Scholar 

  • Targher S, Micciolo R, Occelli V, Zampini M (2017) The role of temporal disparity on audiovisual integration in low-vision individuals. Perception 46:1356–1370

    Article  PubMed  Google Scholar 

  • Tinelli F, Purpura G, Cioni G (2015) Audio-visual stimulation improves visual search abilities in hemianopia due to childhood acquired brain lesions. Multisens Res 28:153–171

    Article  PubMed  Google Scholar 

  • Vachon P, Voss P, Lassonde M, Leroux JM, Mensour B, Beaudoin G, Bourgouin P, Lepore F (2013) Reorganization of the auditory, visual and multimodal areas in early deaf individuals. Neuroscience 245:50–60

    Article  CAS  PubMed  Google Scholar 

  • Van Eden CG, Lamme VA, Uylings HB (1992) Heterotopic cortical afferents to the medial prefrontal cortex in the rat. A combined retrograde and anterograde tracer study. Eur J Neurosci 4:77–97

    Article  PubMed  Google Scholar 

  • van Laarhoven T, Keetels M, Schakel L, Vroomen J (2018) Audio-visual speech in noise perception in dyslexia. Dev Sci 21

    Google Scholar 

  • Vasconcelos N, Pantoja J, Belchior H, Caixeta FV, Faber J, Freire MA, Cota VR, Anibal de Macedo E, Laplagne DA, Gomes HM, Ribeiro S (2011) Cross-modal responses in the primary visual cortex encode complex objects and correlate with tactile discrimination. Proc Natl Acad Sci U S A 108:15408–15413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincis R, Fontanini A (2016) Associative learning changes cross-modal representations in the gustatory cortex. elife 5

    Google Scholar 

  • Wallace MT, Stein BE (1994) Cross-modal synthesis in the midbrain depends on input from cortex. J Neurophysiol 71:429–432

    Article  CAS  PubMed  Google Scholar 

  • Wallace MT, Stein BE (1997) Development of multisensory neurons and multisensory integration in cat superior colliculus. J Neurosci 17:2429–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace MT, Stein BE (2000) Onset of cross-modal synthesis in the neonatal superior colliculus is gated by the development of cortical influences. J Neurophysiol 83:3578–3582

    Article  CAS  PubMed  Google Scholar 

  • Wallace MT, Perrault TJ Jr, Hairston WD, Stein BE (2004) Visual experience is necessary for the development of multisensory integration. J Neurosci 24:9580–9584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace MT, Carriere BN, Perrault TJ Jr, Vaughan JW, Stein BE (2006) The development of cortical multisensory integration. J Neurosci 26:11844–11849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yu L, Xu J, Stein BE, Rowland BA (2020) Experience creates the multisensory transform in the superior colliculus. Front Integr Neurosci 14:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson LK, Meredith MA, Stein BE (1996) The role of anterior ectosylvian cortex in cross-modality orientation and approach behavior. Exp Brain Res 112:1–10

    Article  CAS  PubMed  Google Scholar 

  • Williams LE, Light GA, Braff DL, Ramachandran VS (2010) Reduced multisensory integration in patients with schizophrenia on a target detection task. Neuropsychologia 48:3128–3136

    Article  PubMed  PubMed Central  Google Scholar 

  • Wurtz RH, Goldberg ME (1971) Superior colliculus cell responses related to eye movements in awake monkeys. Science 171:82–84

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yu L, Rowland BA, Stanford TR, Stein BE (2014a) Noise-rearing disrupts the maturation of multisensory integration. Eur J Neurosci 39:602–613

    Article  PubMed  Google Scholar 

  • Xu J, Sun X, Zhou X, Zhang J, Yu L (2014b) The cortical distribution of multisensory neurons was modulated by multisensory experience. Neuroscience 272:1–9

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yu L, Stanford TR, Rowland BA, Stein BE (2015) What does a neuron learn from multisensory experience? J Neurophysiol 113:883–889

    Article  PubMed  Google Scholar 

  • Xu J, Yu L, Rowland BA, Stein BE (2017a) The normal environment delays the development of multisensory integration. Sci Rep 7:4772

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Bi T, Keniston L, Zhang J, Zhou X, Yu L (2017b) Deactivation of association cortices disrupted the congruence of visual and auditory receptive fields in superior colliculus neurons. Cereb Cortex 27:5568–5578

    PubMed  Google Scholar 

  • Xu J, Bi T, Wu J, Meng F, Wang K, Hu J, Han X, Zhang J, Zhou X, Keniston L, Yu L (2018) Spatial receptive field shift by preceding cross-modal stimulation in the cat superior colliculus. J Physiol 596:5033–5050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Rowland BA, Stein BE (2010) Initiating the development of multisensory integration by manipulating sensory experience. J Neurosci 30:4904–4913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Rowland BA, Xu J, Stein BE (2013) Multisensory plasticity in adulthood: cross-modal experience enhances neuronal excitability and exposes silent inputs. J Neurophysiol 109:464–474

    Article  PubMed  Google Scholar 

  • Yu L, Xu J, Rowland BA, Stein BE (2016) Multisensory plasticity in superior colliculus neurons is mediated by association cortex. Cereb Cortex 26:1130–1137

    Article  PubMed  Google Scholar 

  • Yu L, Cuppini C, Xu J, Rowland BA, Stein BE (2019) Cross-modal competition: the default computation for multisensory processing. J Neurosci 39:1374–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Xu J, Keniston L, Wu J, Chang S, Yu L (2021) Choice-dependent cross-modal interaction in the medial prefrontal cortex of rats. Mol Brain 14:13

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, L., Xu, J. (2024). The Development of Multisensory Integration at the Neuronal Level. In: Gu, Y., Zaidel, A. (eds) Advances of Multisensory Integration in the Brain. Advances in Experimental Medicine and Biology, vol 1437. Springer, Singapore. https://doi.org/10.1007/978-981-99-7611-9_10

Download citation

Publish with us

Policies and ethics