Skip to main content

Exploring a Configurable Virtual Environment for the Assessment and Diagnosis of the Driver's Psychophysical State

  • Chapter
  • First Online:
mHealth and Human-Centered Design Towards Enhanced Health, Care, and Well-being

Part of the book series: Studies in Big Data ((SBD,volume 120))

  • 181 Accesses

Abstract

Every year, more than one million people die from road accidents. Between 10 and 30% of these accidents are due to human factors, especially drowsiness, stress, and inattention. Determining the psychophysical condition of the driver is important to help prevent those accidents, limit damage to things and people, and even reduce the number of deaths. Today's technology is moving in the analysis of the physiological data necessary to determine these states. However, one of the major problems concerning data collection is conducting the tests in a real-world environment. For this reason, designing and employing a virtual environment that recreates a simulation of real-world’s conditions would enable researchers to obtain reliable and realistic data without putting users at risk. The paper describes the development and validation of a configurable and scalable virtual environment, conceived to help researchers to set up the environment freely according to their research needs. The in-depth analysis explored a normal and an altered environmental condition to investigate and assess the negative parameters responsible for increasing driving inattention. Finally, the outcomes have become the first experimentation to create an AI-based simulator for diagnosing the driver's state of health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization: Global status report on road safety 2018, Geneve (2018)

    Google Scholar 

  2. Medina, A.L., Lee, S.E., Wierwille, W.W., Hanowski, R.J.: Relationship between infrastructure, driver error, and critical incidents. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 48, pp. 2075–2079 (2004). https://doi.org/10.1177/154193120404801661

  3. Stanton, N.A., Salmon, P.M.: Human error taxonomies applied to driving: a generic driver error taxonomy and its implications for intelligent transport systems. Saf. Sci. 47, 227–237 (2009). https://doi.org/10.1016/j.ssci.2008.03.006

    Article  Google Scholar 

  4. Hills, B.L.: Vision, visibility, and perception in driving. Perception 9, 183–216 (1980). https://doi.org/10.1068/p090183

    Article  Google Scholar 

  5. Endsley M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Factors J. Hum. Factors Ergon. Soc. 37, 32–64 (1995). https://doi.org/10.1518/001872095779049543

  6. Green, M.: “How Long Does It Take to Stop?” Methodological analysis of driver perception-brake times. Transp. Hum. Factors 2, 195–216 (2000). https://doi.org/10.1207/STHF0203_1

    Article  Google Scholar 

  7. Driver, J.: A selective review of selective attention research from the past century. Br. J. Psychol. 92, 53–78 (2001)

    Article  Google Scholar 

  8. Cnossen, F., Meijman, T., Rothengatter, T.: Adaptive strategy changes as a function of task demands: a study of car drivers. Ergonomics 47, 218–236 (2004). https://doi.org/10.1080/00140130310001629757

    Article  Google Scholar 

  9. Patten, C.J., Kircher, A., Östlund, J., Nilsson, L.: Using mobile telephones: cognitive workload and attention resource allocation. Accid. Anal. Prev. 36, 341–350 (2004). https://doi.org/10.1016/S0001-4575(03)00014-9

    Article  Google Scholar 

  10. Harbluk, J.L., Lalande, S.: Performing e-mail tasks while driving: the impact of speech-based tasks on visual detection. In: Driving Assessment 2005: Proceedings of the 3rd International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design, pp. 311–317. University of Iowa, Iowa (2005). https://doi.org/10.17077/drivingassessment.1178

  11. Jordan, P.W., Johnson, G.I.: Exploring mental workload via TLX: the case of operating a car stereo whilst driving. Vis. Veh. 4, 255–262 (1993)

    Google Scholar 

  12. Spence, C., Ho, C.: Multisensory warning signals for event perception and safe driving. Theor. Issues Ergon. Sci. 9, 523–554 (2008). https://doi.org/10.1080/14639220701816765

    Article  Google Scholar 

  13. Damiani, S., Deregibus, E., Andreone, L.: Driver-vehicle interfaces and interaction: where are they going? Eur. Transp. Res. Rev. 1, 87–96 (2009). https://doi.org/10.1007/s12544-009-0009-2

    Article  Google Scholar 

  14. Ho, C., Spence, C.: The Multisensory Driver: Implications for Ergonomic Car Interface Design (Human Factors in Road and Rail). CRC Press, Boca Raton (2008)

    Google Scholar 

  15. Ayoub, J., Zhou, F., Bao, S., Yang, X.J.: From manual driving to automated driving. In: Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 70–90. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3342197.3344529

  16. Gibson, Z., Butterfield, J., Marzano, A.: User-centered design criteria in next generation vehicle consoles. Procedia CIRP 55, 260–265 (2016). https://doi.org/10.1016/j.procir.2016.07.024

    Article  Google Scholar 

  17. Pitts, M.J., Skrypchuk, L., Attridge, A., Williams, M.A.: Comparing the user experience of touchscreen technologies in an automotive application. In: Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 1–8. ACM, New York, NY, USA (2014). https://doi.org/10.1145/2667317.2667418

  18. Wintersberger, P., Riener, A., Schartmüller, C., Frison, A.-K., Weigl, K.: Let me finish before I take over. In: Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 53–65. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3239060.3239085

  19. Dukic, T., Hanson, L., Falkmer, T.: Effect of drivers’ age and push button locations on visual time off road, steering wheel deviation and safety perception. Ergonomics 49, 78–92 (2006). https://doi.org/10.1080/00207540500422320

    Article  Google Scholar 

  20. Lu, M., Wevers, K., Van Der Heijden, R.: Technical feasibility of advanced driver assistance systems (ADAS) for road traffic safety. Transp. Plan. Technol. 28, 167–187 (2005). https://doi.org/10.1080/03081060500120282

    Article  Google Scholar 

  21. Meschtscherjakov, A., Perterer, N., Trösterer, S., Krischkowsky, A., Tscheligi, M.: The neglected passenger—how collaboration in the car fosters driving experience and safety. In: Meixner, G., Müller, C. (eds.) Automotive User Interfaces, pp. 187–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49448-7_7

  22. SAE: Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems (2014). https://doi.org/10.4271/j3016_201401

  23. McEvoy, S.P., Stevenson, M.R., Woodward, M.: The prevalence of, and factors associated with, serious crashes involving a distracting activity. Accid. Anal. Prev. 39, 475–482 (2007). https://doi.org/10.1016/j.aap.2006.09.005

    Article  Google Scholar 

  24. Johns, M.W.: A sleep physiologist’s view of the drowsy driver. Transp. Res. Part F Traffic Psychol. Behav. 3, 241–249 (2000). https://doi.org/10.1016/S1369-8478(01)00008-0

  25. Soares, S., Ferreira, S., Couto, A.: Driving simulator experiments to study drowsiness: a systematic review. Traffic Inj. Prev. 21, 29–37 (2020). https://doi.org/10.1080/15389588.2019.1706088

    Article  Google Scholar 

  26. Wang, J., Sun, S., Fang, S., Fu, T., Stipancic, J.: Predicting drowsy driving in real-time situations: using an advanced driving simulator, accelerated failure time model, and virtual location-based services. Accid. Anal. Prev. 99, 321–329 (2017). https://doi.org/10.1016/j.aap.2016.12.014

    Article  Google Scholar 

  27. Gielen, J., Aerts, J.-M.: Feature extraction and evaluation for driver drowsiness detection based on thermoregulation. Appl. Sci. 9, 3555 (2019). https://doi.org/10.3390/app9173555

    Article  Google Scholar 

  28. May, J.F., Baldwin, C.L.: Driver fatigue: the importance of identifying causal factors of fatigue when considering detection and countermeasure technologies. Transp. Res. Part F Traffic Psychol. Behav. 12, 218–224 (2009). https://doi.org/10.1016/j.trf.2008.11.005

  29. Waterhouse, J., Fukuda, Y., Morita, T.: Daily rhythms of the sleep-wake cycle. J. Physiol. Anthropol. 31, 5 (2012). https://doi.org/10.1186/1880-6805-31-5

    Article  Google Scholar 

  30. Pack, A.I., Pack, A.M., Rodgman, E., Cucchiara, A., Dinges, D.F., Schwab, C.W.: Characteristics of crashes attributed to the driver having fallen asleep. Accid. Anal. Prev. 27, 769–775 (1995). https://doi.org/10.1016/0001-4575(95)00034-8

    Article  Google Scholar 

  31. Gimeno, P.T., Cerezuela, G.P., Montanes, M.C.: On the concept and measurement of driver drowsiness, fatigue and inattention: implications for countermeasures. Int. J. Veh. Des. 42, 67 (2006). https://doi.org/10.1504/IJVD.2006.010178

    Article  Google Scholar 

  32. Gastaldi, M., Rossi, R., Gecchele, G.: Effects of driver task-related fatigue on driving performance. Procedia Soc. Behav. Sci. 111, 955–964 (2014). https://doi.org/10.1016/j.sbspro.2014.01.130

    Article  Google Scholar 

  33. Ahlström, C., Anund, A., Fors, C., Åkerstedt, T.: The effect of daylight versus darkness on driver sleepiness: a driving simulator study. J. Sleep Res. 27, e12642 (2018). https://doi.org/10.1111/jsr.12642

    Article  Google Scholar 

  34. Du, H., Zhao, X., Zhang, X., Zhang, Y., Rong, J.: Effects of fatigue on driving performance under different roadway geometries: a simulator study. Traffic Inj. Prev. 16, 468–473 (2015). https://doi.org/10.1080/15389588.2014.971155

    Article  Google Scholar 

  35. Ahlström, C., Anund, A., Fors, C., Åkerstedt, T.: Effects of the road environment on the development of driver sleepiness in young male drivers. Accid. Anal. Prev. 112, 127–134 (2018). https://doi.org/10.1016/j.aap.2018.01.012

    Article  Google Scholar 

  36. Morales, J.M., Díaz-Piedra, C., Rieiro, H., Roca-González, J., Romero, S., Catena, A., Fuentes, L.J., Di Stasi, L.L.: Monitoring driver fatigue using a single-channel electroencephalographic device: a validation study by gaze-based, driving performance, and subjective data. Accid. Anal. Prev. 109, 62–69 (2017). https://doi.org/10.1016/j.aap.2017.09.025

    Article  Google Scholar 

  37. Olstam, J.: Simulation of vehicles in a driving simulator using microscopic traffic simulation. In: Transport Simulation, pp. 43–58. EFPL Press (2009). https://doi.org/10.1201/9781439808016-c3

  38. Carsten, O., Jamson, A.H.: Driving simulators as research tools in traffic psychology. In: Handbook of Traffic Psychology, pp. 87–96. Elsevier (2011). https://doi.org/10.1016/B978-0-12-381984-0.10007-4

  39. Filtness, A.J., Anund, A., Fors, C., Ahlström, C., Åkerstedt, T., Kecklund, G.: Sleep-related eye symptoms and their potential for identifying driver sleepiness. J. Sleep Res. 23, 568–575 (2014). https://doi.org/10.1111/jsr.12163

    Article  Google Scholar 

  40. Shahid, A., Wilkinson, K., Marcu, S., Shapiro, C.M.: Karolinska sleepiness scale (KSS). In: STOP, THAT and One Hundred Other Sleep Scales, pp. 209–210. Springer New York, NY (2011). https://doi.org/10.1007/978-1-4419-9893-4_47

  41. Allen, J.: Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28, R1–R39 (2007). https://doi.org/10.1088/0967-3334/28/3/R01

    Article  Google Scholar 

  42. Kurian, D., Johnson Joseph, P.L., Radhakrishnan, K., Balakrishnan, A.A.: Drowsiness detection using photoplethysmography signal. In: 2014 Fourth International Conference on Advances in Computing and Communications, pp. 73–76. IEEE (2014). https://doi.org/10.1109/ICACC.2014.23

  43. Cao, A., Chintamani, K.K., Pandya, A.K., Ellis, R.D.: NASA TLX: software for assessing subjective mental workload. Behav. Res. Methods. 41, 113–117 (2009). https://doi.org/10.3758/BRM.41.1.113

    Article  Google Scholar 

  44. Kirakowski, J., Corbett, M.: SUMI: the software usability measurement inventory. Br. J. Educ. Technol. 24, 210–212 (1993). https://doi.org/10.1111/j.1467-8535.1993.tb00076.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Andrea Giacobone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longhin, J., Amidei, A., Giacobone, G.A. (2023). Exploring a Configurable Virtual Environment for the Assessment and Diagnosis of the Driver's Psychophysical State. In: Scataglini, S., Imbesi, S., Marques, G. (eds) mHealth and Human-Centered Design Towards Enhanced Health, Care, and Well-being. Studies in Big Data, vol 120. Springer, Singapore. https://doi.org/10.1007/978-981-99-3989-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3989-3_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3988-6

  • Online ISBN: 978-981-99-3989-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics