Skip to main content

Modified \(C_p\) Criterion in Widely Applicable Models

  • Conference paper
  • First Online:
Intelligent Decision Technologies (KESIDT 2023)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 352))

Included in the following conference series:

  • 155 Accesses

Abstract

A risk function based on the mean square error of prediction is a widely used measure of the goodness of a candidate model in model selection. A modified \(C_p\) criterion referred to as an \(MC_p\) criterion is an unbiased estimator of the risk function. The original \(MC_p\) criterion was proposed by Fujikoshi and Satoh (1997) in multivariate linear regression models. Thereafter, many authors have proposed \(MC_p\) criteria for various candidate models. A purpose of this paper is to propose an \(MC_p\) criterion for a wide class of candidate models, including results in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujikoshi, Y., Satoh, K.: Modified AIC and \(C_p\) in multivariate linear regression. Biometrika 84, 707–716 (1997). https://doi.org/10.1093/biomet/84.3.707

    Article  MathSciNet  MATH  Google Scholar 

  2. Harville, D.A.: Matrix Algebra from a Statistician’s Perspective. Springer, New York (1997). https://doi.org/10.1007/b98818

    Book  MATH  Google Scholar 

  3. Mallows, C.L.: Some comments on \(C_p\). Technometrics 15, 661–675 (1973). https://doi.org/10.2307/1267380

    Article  MATH  Google Scholar 

  4. Mallows, C.L.: More comments on \(C_p\). Technometrics 37, 362–372 (1995). https://doi.org/10.2307/1269729

    Article  MathSciNet  MATH  Google Scholar 

  5. Potthoff, R.F., Roy, S.N.: A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika 51, 313–326 (1964). https://doi.org/10.2307/2334137

    Article  MathSciNet  MATH  Google Scholar 

  6. Satoh, K., Kobayashi, M., Fujikoshi, Y.: Variable selection for the growth curve model. J. Multivar. Anal. 60, 277–292 (1997). https://doi.org/10.1006/jmva.1996.1658

    Article  MathSciNet  MATH  Google Scholar 

  7. Sparks, R.S., Coutsourides, D., Troskie, L.: The multivariate \(C_p\). Comm. Stat. Theor. Meth. 12, 1775–1793 (1983). https://doi.org/10.1080/03610928308828569

    Article  MATH  Google Scholar 

  8. Yanagihara, H., Satoh, K.: An unbiased \(C_p\) criterion for multivariate ridge regression. J. Multivar. Anal. 101, 1226–1238 (2010). https://doi.org/10.1016/j.jmva.2009.09.017

    Article  MATH  Google Scholar 

  9. Yanagihara, H., Nagai, I., Satoh, K.: A bias-corrected \(C_p\) criterion for optimizing ridge parameters in multivariate generalized ridge regression. Jpn. J. Appl. Stat. 38, 151–172 (2009) (in Japanese). https://doi.org/10.5023/jappstat.38.151

Download references

Acknowledgments

The authors wish to thank two reviewers for their helpful comments. This research was supported by JSPS Bilateral Program Grant Number JPJSBP 120219927 and JSPS KAKENHI Grant Number 20H04151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Yanagihara .

Editor information

Editors and Affiliations

Appendix: Mathematical Details

Appendix: Mathematical Details

1.1 A.1 The Proof of Lemma 1

Let \({\boldsymbol{\mathcal E}}\) be an \(n\times p\) random matrix defined by

$$\begin{aligned} {\boldsymbol{\mathcal E}}=({\boldsymbol{Y}}-{\boldsymbol{\varGamma }}){\boldsymbol{\varOmega }}, \quad {\boldsymbol{\varOmega }}={\boldsymbol{\varSigma }}^{-1/2}. \end{aligned}$$
(A.1)

Notice that

$$\begin{aligned} d({\boldsymbol{Y}}_\textrm{F},\hat{{\boldsymbol{Y}}})=d({\boldsymbol{Y}}_\textrm{F},{\boldsymbol{M}}{\boldsymbol{Y}})+d({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})+2\mathcal L, \end{aligned}$$
(A.2)

where \(\hat{{\boldsymbol{Y}}}\) is given by (4), and \(\mathcal L=\text{ tr }\{({\boldsymbol{Y}}_\textrm{F}-{\boldsymbol{M}}{\boldsymbol{Y}}){\boldsymbol{\varOmega }}^2({\boldsymbol{M}}{\boldsymbol{Y}}-\hat{{\boldsymbol{Y}}})'\}\). Since \({\boldsymbol{Y}}_\textrm{F}\) is independent of \({\boldsymbol{Y}}\) and distributed according to the same distribution as \({\boldsymbol{Y}}\), and \({\boldsymbol{M}}\) satisfies (2), we have

$$\begin{aligned} E\left[ d({\boldsymbol{Y}}_\textrm{F},{\boldsymbol{M}}{\boldsymbol{Y}})\right] =E\left[ d({\boldsymbol{Y}}_\textrm{F},{\boldsymbol{\varGamma }})\right] +E\left[ \text{ tr }({\boldsymbol{\mathcal E}}'{\boldsymbol{M}}{\boldsymbol{\mathcal E}})\right] =(n+m)p. \end{aligned}$$
(A.3)

Notice that \({\boldsymbol{Y}}_\textrm{F}\), \({\boldsymbol{M}}{\boldsymbol{\mathcal E}}\), and \({\boldsymbol{G}}\) in (3) are mutually independent, and

$$ \mathcal L=\text{ tr }\left\{ \left( \left( {\boldsymbol{Y}}_\textrm{F}-{\boldsymbol{\varGamma }}\right) {\boldsymbol{\varOmega }}-{\boldsymbol{M}}{\boldsymbol{\mathcal E}}\right) \left( {\boldsymbol{M}}{\boldsymbol{\mathcal E}}-{\boldsymbol{H}}{\boldsymbol{\mathcal E}}{\boldsymbol{\varOmega }}^{-1}{\boldsymbol{G}}{\boldsymbol{\varOmega }}+\left( {\boldsymbol{\varGamma }}-{\boldsymbol{H}}{\boldsymbol{\varGamma }}{\boldsymbol{G}}\right) {\boldsymbol{\varOmega }}\right) '\right\} . $$

The above equations and (2) imply

$$\begin{aligned} E[\mathcal L]&=-E\left[ \text{ tr }\left\{ {\boldsymbol{M}}{\boldsymbol{\mathcal E}}\left( {\boldsymbol{M}}{\boldsymbol{\mathcal E}}-{\boldsymbol{H}}{\boldsymbol{\mathcal E}}{\boldsymbol{\varOmega }}^{-1}{\boldsymbol{G}}{\boldsymbol{\varOmega }}\right) '\right\} \right] \nonumber \\&=-E\left[ \text{ tr }({\boldsymbol{\mathcal E}}'{\boldsymbol{M}}{\boldsymbol{\mathcal E}})\right] +E\left[ \mathcal L_{1}\right] =-mp+E\left[ \mathcal L_{1}\right] , \end{aligned}$$
(A.4)

where \(\mathcal L_{1}=\text{ tr }({\boldsymbol{\mathcal E}}'{\boldsymbol{H}}{\boldsymbol{\mathcal E}}{\boldsymbol{\varOmega }}{\boldsymbol{G}}'{\boldsymbol{\varOmega }}^{-1})\). Since \({\boldsymbol{\mathcal E}}'{\boldsymbol{H}}{\boldsymbol{\mathcal E}}\) is independent of \({\boldsymbol{G}}\) and \(\text{ tr }({\boldsymbol{G}})=q\), the following equation is obtained.

$$\begin{aligned} E\left[ \mathcal L_{1}\right] =\text{ tr }({\boldsymbol{H}})E\left[ \text{ tr }\left( {\boldsymbol{\varOmega }}{\boldsymbol{G}}'{\boldsymbol{\varOmega }}^{-1}\right) \right] =\text{ tr }({\boldsymbol{H}})E\left[ \text{ tr }\left( {\boldsymbol{G}}'\right) \right] =q\text{ tr }({\boldsymbol{H}}). \end{aligned}$$
(A.5)

From (A.2), (A.3), (A.4), and (A.5), Lemma 1 is proved.

1.2 A.2 The Proof of Lemma 2

Notice that \(\text{ tr }\{({\boldsymbol{Y}}-{\boldsymbol{M}}{\boldsymbol{Y}}){\boldsymbol{S}}^{-1}({\boldsymbol{M}}{\boldsymbol{Y}}-\hat{{\boldsymbol{Y}}})'\}=0\) because of

$$ \text{ tr }\{({\boldsymbol{Y}}-{\boldsymbol{M}}{\boldsymbol{Y}}){\boldsymbol{S}}^{-1}({\boldsymbol{M}}{\boldsymbol{Y}}-\hat{{\boldsymbol{Y}}})'\}=\text{ tr }\left\{ ({\boldsymbol{I}}_n-{\boldsymbol{M}}){\boldsymbol{Y}}{\boldsymbol{S}}^{-1}({\boldsymbol{Y}}-{\boldsymbol{H}}{\boldsymbol{Y}}{\boldsymbol{G}})'{\boldsymbol{M}}\right\} . $$

It follows from this result and a calculation similar to the one used to find (A.2) that

$$\begin{aligned} \hat{d}({\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})=\hat{d}({\boldsymbol{Y}},{\boldsymbol{M}}{\boldsymbol{Y}})+\hat{d}({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}}). \end{aligned}$$
(A.6)

It is easy to see from the definition of \({\boldsymbol{S}}\) in (3) that

$$\begin{aligned} \hat{d}({\boldsymbol{Y}},{\boldsymbol{M}}{\boldsymbol{Y}})=(n-m)\text{ tr }({\boldsymbol{S}}{\boldsymbol{S}}^{-1})=(n-m)p. \end{aligned}$$
(A.7)

Substituting (A.7) into (A.6) yields

$$\begin{aligned} \hat{d}({\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})=(n-m)p+\hat{d}({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}}). \end{aligned}$$
(A.8)

By (7), (A.8), and the definition of the bias, Lemma 2 is proved.

1.3 A.3The Proof of Lemma 3

Let \({\boldsymbol{W}}\) be a \(p\times p\) random matrix defined by

$$\begin{aligned} {\boldsymbol{W}}=(n-m){\boldsymbol{\varOmega }}{\boldsymbol{S}}{\boldsymbol{\varOmega }}, \end{aligned}$$
(A.9)

where \({\boldsymbol{\varOmega }}\) is given by (A.1). Then, \({\boldsymbol{W}}\sim \mathcal W_p(n-m,{\boldsymbol{I}}_p)\). Let \({\boldsymbol{Q}}_2\) be a \(p\times (p-q)\) matrix satisfying \({\boldsymbol{Q}}_2'{\boldsymbol{Q}}_2={\boldsymbol{I}}_{p-q}\) and \({\boldsymbol{Q}}_1'{\boldsymbol{Q}}_2={\boldsymbol{O}}_{q,p-q}\), where \({\boldsymbol{Q}}_1\) is given by (10), and let \({\boldsymbol{Q}}\) be the \(p\times p\) orthogonal matrix defined by \({\boldsymbol{Q}}=({\boldsymbol{Q}}_1,{\boldsymbol{Q}}_2)\). Then, the three matrices \({\boldsymbol{C}}_1\), \({\boldsymbol{C}}_2\), and \({\boldsymbol{C}}_3\) given in (9) can be rewritten as

$$\begin{aligned} {\boldsymbol{C}}_1&={\boldsymbol{Q}}_1\left( {\boldsymbol{Q}}_1'{\boldsymbol{W}}^{-1}{\boldsymbol{Q}}_1\right) ^{-1}{\boldsymbol{Q}}_1'{\boldsymbol{W}}^{-1}({\boldsymbol{Q}}_1,{\boldsymbol{Q}}_2){\boldsymbol{Q}}', \nonumber \\ {\boldsymbol{C}}_2&=(n-m){\boldsymbol{Q}}\begin{pmatrix}{\boldsymbol{Q}}_1' \\ {\boldsymbol{Q}}_2' \end{pmatrix}{\boldsymbol{W}}^{-1}{\boldsymbol{Q}}_1\left( {\boldsymbol{Q}}_1'{\boldsymbol{W}}^{-1}{\boldsymbol{Q}}_1\right) ^{-1}{\boldsymbol{Q}}_1'{\boldsymbol{W}}^{-1}({\boldsymbol{Q}}_1,{\boldsymbol{Q}}_2){\boldsymbol{Q}}', \\ {\boldsymbol{C}}_3&= {\boldsymbol{Q}}\begin{pmatrix}{\boldsymbol{Q}}_1' \\ {\boldsymbol{Q}}_2' \end{pmatrix}{\boldsymbol{W}}^{-1}{\boldsymbol{Q}}_1\left( {\boldsymbol{Q}}_1'{\boldsymbol{W}}^{-1}{\boldsymbol{Q}}_1\right) ^{-2}{\boldsymbol{Q}}_1'{\boldsymbol{W}}^{-1}({\boldsymbol{Q}}_1,{\boldsymbol{Q}}_2){\boldsymbol{Q}}'. \nonumber \end{aligned}$$
(A.10)

Let \({\boldsymbol{V}}\) be a \(p\times p\) random matrix defined by \({\boldsymbol{V}}={\boldsymbol{Q}}'{\boldsymbol{W}}{\boldsymbol{Q}}\), and let \({\boldsymbol{Z}}_1\) and \({\boldsymbol{Z}}_2\) be respectively \((n-m)\times q\) and \((n-m)\times (p-q)\) independent random matrices distributed as \(({\boldsymbol{Z}}_1,{\boldsymbol{Z}}_2)\sim \mathcal N_{(n-m)\times p}({\boldsymbol{O}}_{n-m,p},{\boldsymbol{I}}_{(n-m)p})\). By using \({\boldsymbol{V}}\sim \mathcal W_p(n-m,{\boldsymbol{I}}_p)\), the partitioned \({\boldsymbol{V}}\) can be rewritten in \({\boldsymbol{Z}}_1\) and \({\boldsymbol{Z}}_2\) as

$$\begin{aligned} {\boldsymbol{V}}=\begin{pmatrix}{\boldsymbol{V}}_{11} &{} {\boldsymbol{V}}_{12} \\ {\boldsymbol{V}}_{12}' &{} {\boldsymbol{V}}_{22} \end{pmatrix} = \begin{pmatrix}{\boldsymbol{Z}}_1'{\boldsymbol{Z}}_1 &{} {\boldsymbol{Z}}_1'{\boldsymbol{Z}}_2 \\ {\boldsymbol{Z}}_2'{\boldsymbol{Z}}_1 &{} {\boldsymbol{Z}}_2'{\boldsymbol{Z}}_2 \end{pmatrix}. \end{aligned}$$

Hence, it follows from \({\boldsymbol{V}}^{-1}={\boldsymbol{Q}}'{\boldsymbol{W}}^{-1}{\boldsymbol{Q}}\) and the general formula for the inverse of a partitioned matrix, e.g., th. 8.5.11 in [2], that

$$\begin{aligned} {\boldsymbol{V}}^{-1}&=\begin{pmatrix}{\boldsymbol{Q}}_1'{\boldsymbol{W}}^{-1}{\boldsymbol{Q}}_1 &{} {\boldsymbol{Q}}_1'{\boldsymbol{W}}^{-1}{\boldsymbol{Q}}_2 \\ {\boldsymbol{Q}}_2'{\boldsymbol{W}}^{-1}{\boldsymbol{Q}}_1 &{} {\boldsymbol{Q}}_2'{\boldsymbol{W}}^{-1}{\boldsymbol{Q}}_2 \end{pmatrix} \nonumber \\&= \begin{pmatrix}{\boldsymbol{V}}_{11\cdot 2}^{-1} &{} &{} -{\boldsymbol{V}}_{11\cdot 2}^{-1}{\boldsymbol{V}}_{12}{\boldsymbol{V}}_{22}^{-1} \\ -{\boldsymbol{V}}_{22}^{-1}{\boldsymbol{V}}_{12}'{\boldsymbol{V}}_{11\cdot 2}^{-1} &{} ~ &{} {\boldsymbol{V}}_{22}^{-1}+{\boldsymbol{V}}_{22}^{-1}{\boldsymbol{V}}_{12}'{\boldsymbol{V}}_{11\cdot 2}^{-1}{\boldsymbol{V}}_{12}{\boldsymbol{V}}_{22}^{-1} \end{pmatrix}, \end{aligned}$$
(A.11)

where \({\boldsymbol{V}}_{11\cdot 2}={\boldsymbol{V}}_{11}-{\boldsymbol{V}}_{12}{\boldsymbol{V}}_{22}^{-1}{\boldsymbol{V}}_{12}'\). Substituting (A.11) into (A.10) yields

$$\begin{aligned} {\boldsymbol{C}}_1&={\boldsymbol{Q}}_1 \left( {\boldsymbol{I}}_q,-{\boldsymbol{V}}_{12}{\boldsymbol{V}}_{22}^{-1} \right) {\boldsymbol{Q}}', \nonumber \\ {\boldsymbol{C}}_2&=(n-m){\boldsymbol{Q}}\left\{ {\boldsymbol{V}}^{-1}-\begin{pmatrix}{\boldsymbol{O}}_{q,q} &{} {\boldsymbol{O}}_{q,p-q} \\ {\boldsymbol{O}}_{p-q,q} &{} {\boldsymbol{V}}_{22}^{-1}\end{pmatrix}\right\} {\boldsymbol{Q}}', \\ {\boldsymbol{C}}_3&= {\boldsymbol{Q}}\begin{pmatrix}{\boldsymbol{I}}_q &{} &{} -{\boldsymbol{V}}_{12}{\boldsymbol{V}}_{22}^{-1} \\ - {\boldsymbol{V}}_{22}^{-1}{\boldsymbol{V}}_{12}'&{} ~ &{} {\boldsymbol{V}}_{22}^{-1}{\boldsymbol{V}}_{12}'{\boldsymbol{V}}_{12}{\boldsymbol{V}}_{22}^{-1}\end{pmatrix}{\boldsymbol{Q}}'. \nonumber \end{aligned}$$
(A.12)

By using the independence of \({\boldsymbol{Z}}_1\) and \({\boldsymbol{Z}}_2\), and formulas of expectations of the matrix normal distribution and Wishart distribution, we have

$$\begin{aligned}&E\left[ {\boldsymbol{V}}^{-1}\right] =\frac{c_1}{n-m}{\boldsymbol{I}}_p, \quad E\left[ {\boldsymbol{V}}_{22}^{-1}\right] =\frac{c_2}{n-m}{\boldsymbol{I}}_{p-q}, \\&E\left[ {\boldsymbol{V}}_{12}{\boldsymbol{V}}_{22}^{-1}\right] =E\left[ {\boldsymbol{Z}}_{1}'\right] E\left[ {\boldsymbol{Z}}_{2}\left( {\boldsymbol{Z}}_2'{\boldsymbol{Z}}_2\right) ^{-1}\right] ={\boldsymbol{O}}_{q,p-q}, \end{aligned}$$

where \(c_1\) and \(c_2\) are given by (11). It follows from the result \(E[{\boldsymbol{Z}}_1{\boldsymbol{Z}}_1']=q{\boldsymbol{I}}_{n-m}\) and the independence of \({\boldsymbol{Z}}_1\) and \({\boldsymbol{Z}}_2\) that

$$\begin{aligned} E\left[ {\boldsymbol{V}}_{22}^{-1}{\boldsymbol{V}}_{12}'{\boldsymbol{V}}_{12}{\boldsymbol{V}}_{22}^{-1}\right]&= E\left[ \left( {\boldsymbol{Z}}_2'{\boldsymbol{Z}}_2\right) ^{-1}{\boldsymbol{Z}}_2'{\boldsymbol{Z}}_1{\boldsymbol{Z}}_1'{\boldsymbol{Z}}_2\left( {\boldsymbol{Z}}_2'{\boldsymbol{Z}}_2\right) ^{-1}\right] \\&=qE\left[ \left( {\boldsymbol{Z}}_2'{\boldsymbol{Z}}_2\right) ^{-1}{\boldsymbol{Z}}_2'{\boldsymbol{Z}}_2\left( {\boldsymbol{Z}}_2'{\boldsymbol{Z}}_2\right) ^{-1}\right] \\&=qE\left[ {\boldsymbol{V}}_{22}^{-1}\right] =c_3 {\boldsymbol{I}}_{p-q}, \end{aligned}$$

where \(c_3\) is given by (11). By using the above expectations, (A.12), and \({\boldsymbol{Q}}_2{\boldsymbol{Q}}_2'={\boldsymbol{I}}_p-{\boldsymbol{Q}}_1{\boldsymbol{Q}}_1'\), we have

$$\begin{aligned} E\left[ {\boldsymbol{C}}_1\right]&={\boldsymbol{Q}}_1 \left( {\boldsymbol{I}}_q,{\boldsymbol{O}}_{q,p-q} \right) '\begin{pmatrix}{\boldsymbol{Q}}_1' \\ {\boldsymbol{Q}}_2'\end{pmatrix}={\boldsymbol{Q}}_1{\boldsymbol{Q}}_1', \nonumber \\ E\left[ {\boldsymbol{C}}_2\right]&={\boldsymbol{Q}}\left\{ c_1{\boldsymbol{I}}_p-\begin{pmatrix}{\boldsymbol{O}}_{q,q} &{} &{} {\boldsymbol{O}}_{q,p-q} \\ {\boldsymbol{O}}_{p-q,q} &{}~ &{} c_2{\boldsymbol{I}}_{p-q}\end{pmatrix}\right\} {\boldsymbol{Q}}' =c_2{\boldsymbol{Q}}_1{\boldsymbol{Q}}_1'+c_1c_3{\boldsymbol{I}}_p, \\ E\left[ {\boldsymbol{C}}_3\right]&= {\boldsymbol{Q}}\begin{pmatrix}{\boldsymbol{I}}_q &{} &{} {\boldsymbol{O}}_{p-q,q} \\ {\boldsymbol{O}}_{q,p-q} &{} ~ &{} c_3{\boldsymbol{I}}_{p-q} \end{pmatrix}{\boldsymbol{Q}}' =\frac{1}{c_1}E\left[ {\boldsymbol{C}}_2\right] . \nonumber \nonumber \end{aligned}$$

Therefore, Lemma 3 is proved.

1.4 A.4 The Proof of Lemma 4

Let \({\boldsymbol{U}}_0\), \({\boldsymbol{U}}_1\) and \({\boldsymbol{U}}_2\) be \(p\times p\) symmetric random matrices defined by

$$ {\boldsymbol{U}}_0={\boldsymbol{\varOmega }}{\boldsymbol{Y}}'{\boldsymbol{M}}{\boldsymbol{Y}}{\boldsymbol{\varOmega }}, \quad {\boldsymbol{U}}_1={\boldsymbol{\varOmega }}{\boldsymbol{Y}}'{\boldsymbol{H}}{\boldsymbol{Y}}{\boldsymbol{\varOmega }}, \quad {\boldsymbol{U}}_2={\boldsymbol{\varOmega }}{\boldsymbol{Y}}'{\boldsymbol{H}}^2{\boldsymbol{Y}}{\boldsymbol{\varOmega }}, $$

where \({\boldsymbol{\varOmega }}\) is given by (A.1). It follows from the definitions of \({\boldsymbol{C}}_1\), \({\boldsymbol{C}}_2\), and \({\boldsymbol{C}}_3\) in (9) that

$$\begin{aligned}&{\boldsymbol{\varOmega }}^{-1}{\boldsymbol{G}}{\boldsymbol{\varOmega }}={\boldsymbol{C}}_1', \quad {\boldsymbol{C}}_1'{\boldsymbol{C}}_1={\boldsymbol{C}}_3, \quad {\boldsymbol{\varOmega }}^{-1}{\boldsymbol{S}}^{-1}{\boldsymbol{\varOmega }}^{-1}{\boldsymbol{C}}_1={\boldsymbol{C}}_2, \\&{\boldsymbol{C}}_1'{\boldsymbol{\varOmega }}^{-1}{\boldsymbol{S}}^{-1}{\boldsymbol{\varOmega }}^{-1}{\boldsymbol{C}}_1={\boldsymbol{C}}_2. \end{aligned}$$

By using these results, the definitions of d and \(\hat{d}\) in (5), and the assumptions of \({\boldsymbol{M}}\) and \({\boldsymbol{H}}\) in (2), \(d({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})\) and \(\hat{d}({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})\) in (8) can be rewritten as

$$\begin{aligned} d({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})&=\text{ tr }({\boldsymbol{U}}_0)-2\text{ tr }({\boldsymbol{U}}_1{\boldsymbol{C}}_1)+\text{ tr }({\boldsymbol{U}}_2{\boldsymbol{C}}_3), \\ \hat{d}({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})&=(n-m)\text{ tr }({\boldsymbol{U}}_0{\boldsymbol{W}}^{-1})-2\text{ tr }({\boldsymbol{U}}_1{\boldsymbol{C}}_2)+\text{ tr }({\boldsymbol{U}}_2{\boldsymbol{C}}_2), \end{aligned}$$

where \({\boldsymbol{W}}\) is given by (A.9). Notice that \({\boldsymbol{U}}_0\) and \({\boldsymbol{S}}\), \({\boldsymbol{U}}_1\) and \({\boldsymbol{S}}\), and \({\boldsymbol{U}}_2\) and \({\boldsymbol{S}}\) are independent because of \({\boldsymbol{M}}({\boldsymbol{I}}_n-{\boldsymbol{M}})={\boldsymbol{O}}_{n,n}\) and \({\boldsymbol{H}}({\boldsymbol{I}}_n-{\boldsymbol{M}})={\boldsymbol{O}}_{n,n}\), and \({\boldsymbol{C}}_1\), \({\boldsymbol{C}}_2\), and \({\boldsymbol{C}}_3\) are random matrices in which \({\boldsymbol{S}}\) is the only random variable. These imply that

$$\begin{aligned} E\left[ d({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})\right]&=\text{ tr }\left( {\boldsymbol{\varDelta }}_0\right) -2\text{ tr }\left( {\boldsymbol{\varDelta }}_1E\left[ {\boldsymbol{C}}_1\right] \right) +\text{ tr }\left( {\boldsymbol{\varDelta }}_2E\left[ {\boldsymbol{C}}_3\right] \right) , \\ E\left[ \hat{d}({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})\right]&=(n-m)\text{ tr }\left( {\boldsymbol{\varDelta }}_0E\left[ {\boldsymbol{W}}^{-1}\right] \right) -2\text{ tr }\left( {\boldsymbol{\varDelta }}_1E\left[ {\boldsymbol{C}}_2\right] \right) +\text{ tr }\left( {\boldsymbol{\varDelta }}_2E\left[ {\boldsymbol{C}}_2\right] \right) , \end{aligned}$$

where \({\boldsymbol{\varDelta }}_0=E[{\boldsymbol{U}}_0]\), \({\boldsymbol{\varDelta }}_1=E[{\boldsymbol{U}}_1]\), and \({\boldsymbol{\varDelta }}_2=E[{\boldsymbol{U}}_2]\). Notice that \((n-m)E[{\boldsymbol{W}}^{-1}]=c_1{\boldsymbol{I}}_p\), where \(c_1\) is given by (11). By using this result and Lemma 3, we have

$$\begin{aligned} \begin{aligned} E\left[ d({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})\right]&=\text{ tr }\left( {\boldsymbol{\varDelta }}_0\right) -2\text{ tr }\left( {\boldsymbol{\varDelta }}_1{\boldsymbol{Q}}_1{\boldsymbol{Q}}_1'\right) +\frac{1}{c_1}\text{ tr }\left( {\boldsymbol{\varDelta }}_2 E\left[ {\boldsymbol{C}}_2\right] \right) , \\ E\left[ \hat{d}({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})\right]&=c_1\text{ tr }\left( {\boldsymbol{\varDelta }}_0\right) -2\text{ tr }\left( {\boldsymbol{\varDelta }}_1E\left[ {\boldsymbol{C}}_2\right] \right) +\text{ tr }\left( {\boldsymbol{\varDelta }}_2E\left[ {\boldsymbol{C}}_2\right] \right) , \end{aligned} \end{aligned}$$
(A.13)

where \(c_2\) and \(c_3\) are given by (11). Let \(L=\text{ tr }\{{\boldsymbol{U}}_1((n-m){\boldsymbol{W}}^{-1}-{\boldsymbol{C}}_2)\}\). It is easy to see that \(c_2^{-1}=c_1^{-1}+c_2^{-1}c_3\) and \(E[L]=c_1\text{ tr }({\boldsymbol{\varDelta }}_1)-\text{ tr }({\boldsymbol{\varDelta }}_1 E[{\boldsymbol{C}}_2])\). Hence, we can derive

$$\begin{aligned} \text{ tr }\left( {\boldsymbol{\varDelta }}_1{\boldsymbol{Q}}_1{\boldsymbol{Q}}_1'\right)&= \frac{1}{c_2}\text{ tr }\left( {\boldsymbol{\varDelta }}_1E\left[ {\boldsymbol{C}}_2\right] \right) -\frac{c_1c_3}{c_2}\text{ tr }\left( {\boldsymbol{\varDelta }}_1\right) \nonumber \\&=\frac{1}{c_1}\text{ tr }\left( {\boldsymbol{\varDelta }}_1E\left[ {\boldsymbol{C}}_2\right] \right) -\frac{c_3}{c_2}E\left[ L\right] . \end{aligned}$$
(A.14)

A simple calculation shows that \(c_2^{-1}c_3=q/(n-m)\) and \(L=\text{ tr }({\boldsymbol{R}})\), where \({\boldsymbol{R}}\) is given by (12). Using these results, (A.13), and (A.14) yields

$$ E\left[ d({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})\right] =\frac{1}{c_1}E\left[ \hat{d}({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})\right] +\frac{2q}{n-m}E\left[ \text{ tr }({\boldsymbol{R}})\right] . $$

Consequently, Lemma 4 is proved.

1.5 A.5 The Proof of Theorem 1

From Lemmas 1 and 4, an unbiased estimator of \(R_p\) in (6) can be given by

$$\begin{aligned} \hat{R}_p=(n-m)p+2q\text{ tr }({\boldsymbol{H}})+\hat{D}, \end{aligned}$$
(A.15)

where \(\hat{D}\) is given by (13). Notice that \(\{1-(p+1)/(n-m)\}(n-m)p=(n-m)p-p(p+1)\). Hence, the result and (A.8) imply that

$$\begin{aligned} \hat{D}=\left( 1-\frac{p+1}{n-m}\right) \hat{d}({\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})-(n-m)p+p(p+1)+\frac{2q}{n-m}\text{ tr }({\boldsymbol{R}}). \end{aligned}$$
(A.16)

Substituting (A.16) into (A.15) yields that an unbiased estimator \(\hat{R}_p\) coincides with \(MC_p\) in (14).

1.6 A.6 The Proof of Equation in (15)

The \(\hat{d}({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})\) when \({\boldsymbol{H}}={\boldsymbol{M}}\) can be rewritten as

$$ \hat{d}({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})=\text{ tr }\left\{ {\boldsymbol{Y}}'{\boldsymbol{M}}{\boldsymbol{Y}}({\boldsymbol{I}}_p-{\boldsymbol{G}}){\boldsymbol{S}}^{-1}({\boldsymbol{I}}_p-{\boldsymbol{G}})'\right\} . $$

Since \({\boldsymbol{P}}={\boldsymbol{S}}^{1/2}({\boldsymbol{I}}_p-{\boldsymbol{G}}){\boldsymbol{S}}^{-1/2}\) is a symmetric idempotent matrix, we have

$$ ({\boldsymbol{I}}_p-{\boldsymbol{G}}){\boldsymbol{S}}^{-1}({\boldsymbol{I}}_p-{\boldsymbol{G}})' ={\boldsymbol{S}}^{-1/2}{\boldsymbol{P}}^2{\boldsymbol{S}}^{-1/2} =({\boldsymbol{I}}_p-{\boldsymbol{G}}){\boldsymbol{S}}^{-1}. $$

This implies that \(\hat{d}({\boldsymbol{M}}{\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})=\text{ tr }\{{\boldsymbol{Y}}'{\boldsymbol{M}}{\boldsymbol{Y}}({\boldsymbol{I}}_p-{\boldsymbol{G}}){\boldsymbol{S}}^{-1}\}=\text{ tr }({\boldsymbol{R}})\). From this result and (A.8), \(\hat{d}({\boldsymbol{Y}},\hat{{\boldsymbol{Y}}})=(n-m)p+\text{ tr }({\boldsymbol{R}})\) is derived.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yanagihara, H., Nagai, I., Fukui, K., Hijikawa, Y. (2023). Modified \(C_p\) Criterion in Widely Applicable Models. In: Czarnowski, I., Howlett, R., Jain, L.C. (eds) Intelligent Decision Technologies. KESIDT 2023. Smart Innovation, Systems and Technologies, vol 352. Springer, Singapore. https://doi.org/10.1007/978-981-99-2969-6_15

Download citation

Publish with us

Policies and ethics