Skip to main content

Autoencoder-Based Attribute Noise Handling Method for Medical Data

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Abstract

Medical datasets are particularly subject to attribute noise, that is, missing and erroneous values. Attribute noise is known to be largely detrimental to learning performances. To maximize future learning performances, it is primordial to deal with attribute noise before performing any inference. We propose a simple autoencoder-based preprocessing method that can correct mixed-type tabular data corrupted by attribute noise. No other method currently exists to entirely handle attribute noise in tabular data. We experimentally demonstrate that our method outperforms both state-of-the-art imputation methods and noise correction methods on several real-world medical datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ThomasRanvier/Autoencoder-based_Attribute_Noise_Handling_Method_for_Medical_Data.

  2. 2.

    https://scikit-learn.org.

  3. 3.

    https://github.com/jsyoon0823/GAIN.

  4. 4.

    https://github.com/BorisMuzellec/MissingDataOT.

  5. 5.

    https://github.com/travisbrady/py-soft-impute.

  6. 6.

    https://pypi.org/project/missingpy/.

  7. 7.

    https://gist.github.com/lgondara/18387c5f4d745673e9ca8e23f3d7ebd3.

References

  1. Barnard, J., Meng, X.-L.: Applications of multiple imputation in medical studies: from AIDS to NHANES. Stat. Meth. Med. Res. 8(1). ISSN 0962–2802. https://doi.org/10.1177/096228029900800103

  2. van Buuren, S., Groothuis-Oudshoorn, K.: mice: multivariate Imputation by Chained Equations in R. Journal of Statistical Software 45(3), 1–67 (2011). ISSN 1548–7660. https://doi.org/10.18637/jss.v045.i03

  3. Golovenkin, S.E., et al.: Trajectories, bifurcations, and pseudo-time in large clinical datasets: applications to myocardial infarction and diabetes data. GigaScience 9(11), giaa128, November 2020. ISSN 2047–217X. https://doi.org/10.1093/gigascience/giaa128

  4. Gondara, L., Wang, K.: MIDA: multiple imputation using denoising autoencoders. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10939, pp. 260–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93040-4_21

    Chapter  Google Scholar 

  5. Mazumder, R., Hastie, T., Tibshirani, R.: Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. JMLR 11, 2287–2322 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Sagheer, S.V.M., George, S.N.: A review on medical image denoising algorithms. Biomed. Sig. Process. Control 61 (2020). ISSN 1746–8094. https://doi.org/10.1016/j.bspc.2020.102036

  7. Muzellec, B., Josse, J., Boyer, C., Cuturi, M.: Missing data imputation using optimal transport. In: Proceedings of the 37th International Conference on Machine Learning, pp. 7130–7140. PMLR, November 2020. ISSN: 2640–3498 (2020)

    Google Scholar 

  8. Pereira, R.C., Santos, M., Rodrigues, P., Abreu, P.H.: Reviewing autoencoders for missing data imputation: technical trends, applications and outcomes. J. Artif. Intell. Res. 69, December 2020. https://doi.org/10.1613/jair.1.12312

  9. Stef, V.B.: Flexible Imputation of Missing Data, 2nd edn.. Chapman & Hall (2018)

    Google Scholar 

  10. Stekhoven, D.J., Bühlmann, P.: MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1) (2012). ISSN 1367–4803. https://doi.org/10.1093/bioinformatics/btr597

  11. Teng, C.M.: Polishing Blemishes: issues in data correction. IEEE Intell. Syst. 19(2) (2004). ISSN 1941–1294. https://doi.org/10.1109/MIS.2004.1274909. Conference Name: IEEE Intelligent Systems

  12. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. Int. J. Comput. Vis. 128(7), 1867–1888 (2020). https://doi.org/10.1007/s11263-020-01303-4

    Article  Google Scholar 

  13. Van Hulse, J.D., Khoshgoftaar, T.M., Huang, H.: The pairwise attribute noise detection algorithm. Knowl. Inf. Syst. 11(2), 171–190 (2007). ISSN 0219–1377, 0219–3116. https://doi.org/10.1007/s10115-006-0022-x

  14. Yan, l., et al.: An interpretable mortality prediction model for COVID-19 patients. Nat. Mach. Intell. 2(5), 283–288 (2020). ISSN 2522–5839. https://doi.org/10.1038/s42256-020-0180-7

  15. Yang, Y., Wu, X., Zhu, X.: Dealing with predictive-but-unpredictable attributes in noisy data sources. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 471–483. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30116-5_43

    Chapter  Google Scholar 

  16. Yoon, J., Jordon, J., Schaar, M.: GAIN: missing data imputation using generative adversarial nets. In: Proceedings of the 35th International Conference on Machine Learning, pp. 5689–5698. PMLR, July 2018. ISSN: 2640–3498

    Google Scholar 

  17. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study. Artif. Intell. Rev. 22(3), 177–210 (2004). ISSN 1573–7462. https://doi.org/10.1007/s10462-004-0751-8

Download references

Acknowledgments

This research is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement No 875171, project QUALITOP (Monitoring multidimensional aspects of QUAlity of Life after cancer ImmunoTherapy - an Open smart digital Platform for personalized prevention and patient management).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ranvier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ranvier, T., Elgazel, H., Coquery, E., Benabdeslem, K. (2023). Autoencoder-Based Attribute Noise Handling Method for Medical Data. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1793. Springer, Singapore. https://doi.org/10.1007/978-981-99-1645-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1645-0_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1644-3

  • Online ISBN: 978-981-99-1645-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics