Skip to main content

Pseudotyped Viruses for Marburgvirus and Ebolavirus

  • Chapter
  • First Online:
Pseudotyped Viruses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1407))

Abstract

Marburg virus (MARV) and Ebola virus (EBOV) of the Filoviridae family are the most lethal viruses in terms of mortality rate. However, the development of antiviral treatment is hampered by the requirement for biosafety level-4 (BSL-4) containment. The establishment of BSL-2 pseudotyped viruses can provide important tools for the study of filoviruses. This chapter summarizes general information on the filoviruses and then focuses on the construction of replication-deficient pseudotyped MARV and EBOV (e.g., lentivirus system and vesicular stomatitis virus system). It also details the potential applications of the pseudotyped viruses, including neutralization antibody detection, the study of infection mechanisms, the evaluation of antibody-dependent enhancement, virus entry inhibitor screening, and glycoprotein mutation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

aa:

Amino acids

ADE:

Antibody-dependent enhancement

ASMase:

Acid sphingomyelinase

BDBV:

Bundibugyo virus

BLI:

Bioluminescent imaging

BOMV:

Bombali virus

BSL:

Biosafety level

CatB:

Cathepsin B

CatL:

Cathepsin L

DC-SIGN:

Dendritic Cell-Specific Intercellular Adhesion Molecule 3-Grabbing Non-integrin

DC-SIGNR:

DC-SIGN-related molecule

DRC:

Democratic Republic of Congo

EBOV:

Zaire ebolavirus

E-S-FLU:

EBOV-GP-pseudotyped influenza virus

EVD:

Ebola virus disease

FRα:

Folate Receptor Alpha

GAGs:

Glycosaminoglycans

GP:

Glycoprotein

GPCR:

G protein-coupled receptor

HER2:

Human Epidermal Growth Factor Receptor 2

HOS:

Human osteosarcoma

HTS:

High-throughput screening

ID50:

50% inhibition dilution

IFL:

Internal fusion loop

Luc:

Luciferase

MARCH8:

Membrane-Associated RING-CH-Type 8

MARV:

Marburg virus

MBL:

Mannose-Binding Lectin

MLD:

Mucin-like domain

MVA:

Modified vaccinia Ankara

MVD:

Marburg virus disease

NP:

Nucleoprotein

NPC1:

Niemann Pick C1 Protein

RAVV:

Ravn virus

RBD:

Receptor-binding domain

RBS:

Receptor-binding site

RdRp/L:

RNA-dependent RNA polymerase

RESTV:

Reston virus

RTK:

Receptor Tyrosine Kinase

sGP:

Secreted Forms of the GP Protein

SM:

Sphingomyelin

SUDV:

Sudan virus

TAFV:

Taï Forest virus

TAM:

Tyro3/Axl/Mer

TIM-1/4:

T-Cell Immunoglobulin Mucin Domain-1/4

trVLPs:

Transcription-competent viruslike particles

VP35/40/30/24:

Viral Protein 35/40/30/24 kDa

VSV:

Vesicular stomatitis virus

β-gal:

β-Galactosidase

References

  1. Kuhn, J.H.: Guide to the correct use of filoviral nomenclature. Curr. Top. Microbiol. Immunol. 411, 447–460 (2017). https://doi.org/10.1007/82_2017_7

    Article  CAS  PubMed  Google Scholar 

  2. Yang, X.L., et al.: Characterization of a filovirus (Mengla virus) from Rousettus bats in China. Nat. Microbiol. 4, 390–395 (2019). https://doi.org/10.1038/s41564-018-0328-y

    Article  CAS  PubMed  Google Scholar 

  3. Euren, J., et al.: Human interactions with bat populations in Bombali, Sierra Leone. Ecohealth. 17, 292–301 (2020). https://doi.org/10.1007/s10393-020-01502-y

    Article  PubMed  Google Scholar 

  4. Hoenen, T., Groseth, A., Feldmann, H.: Therapeutic strategies to target the Ebola virus life cycle. Nat. Rev. Microbiol. 17, 593–606 (2019). https://doi.org/10.1038/s41579-019-0233-2

    Article  CAS  PubMed  Google Scholar 

  5. Brauburger, K., Hume, A.J., Muhlberger, E., Olejnik, J.: Forty-five years of Marburg virus research. Viruses. 4, 1878–1927 (2012). https://doi.org/10.3390/v4101878

    Article  PubMed  PubMed Central  Google Scholar 

  6. Horimoto, T., Nakayama, K., Smeekens, S.P., Kawaoka, Y.: Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J. Virol. 68, 6074–6078 (1994). https://doi.org/10.1128/jvi.68.9.6074-6078.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ponce, L., Kinoshita, R., Nishiura, H.: Exploring the human-animal interface of Ebola virus disease outbreaks. Math. Biosci. Eng. 16, 3130–3143 (2019). https://doi.org/10.3934/mbe.2019155

    Article  PubMed  Google Scholar 

  8. Dixon, M.G., Schafer, I.J., Centers for Disease, C. & Prevention: Ebola viral disease outbreak--West Africa, 2014. MMWR Morb. Mortal. Wkly Rep. 63, 548–551 (2014)

    PubMed  PubMed Central  Google Scholar 

  9. Anthony, S.M., Bradfute, S.B.: Filoviruses: one of these things is (not) like the other. Viruses. 7, 5172–5190 (2015). https://doi.org/10.3390/v7102867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nyakarahuka, L., et al.: How severe and prevalent are Ebola and Marburg viruses? A systematic review and meta-analysis of the case fatality rates and seroprevalence. BMC Infect. Dis. 16, 708 (2016). https://doi.org/10.1186/s12879-016-2045-6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Volchkov, V.E., et al.: Proteolytic processing of Marburg virus glycoprotein. Virology. 268, 1–6 (2000). https://doi.org/10.1006/viro.1999.0110

    Article  CAS  PubMed  Google Scholar 

  12. Leroy, E.M., et al.: Fruit bats as reservoirs of Ebola virus. Nature. 438, 575–576 (2005). https://doi.org/10.1038/438575a

    Article  CAS  PubMed  Google Scholar 

  13. Ascenzi, P., et al.: Ebolavirus and Marburgvirus: insight the filoviridae family. Mol. Asp. Med. 29, 151–185 (2008). https://doi.org/10.1016/j.mam.2007.09.005

    Article  CAS  Google Scholar 

  14. Davey, R.A., et al.: Mechanisms of filovirus entry. Curr. Top. Microbiol. Immunol. 411, 323–352 (2017). https://doi.org/10.1007/82_2017_14

    Article  CAS  PubMed  Google Scholar 

  15. Geisbert, T.W., Jahrling, P.B.: Differentiation of filoviruses by electron microscopy. Virus Res. 39, 129–150 (1995). https://doi.org/10.1016/0168-1702(95)00080-1

    Article  CAS  PubMed  Google Scholar 

  16. Martin, B., Hoenen, T., Canard, B., Decroly, E.: Filovirus proteins for antiviral drug discovery: a structure/function analysis of surface glycoproteins and virus entry. Antivir. Res. 135, 1–14 (2016). https://doi.org/10.1016/j.antiviral.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  17. Gordon, T.B., Hayward, J.A., Marsh, G.A., Baker, M.L., Tachedjian, G.: Host and viral proteins modulating Ebola and Marburg virus egress. Viruses. 11 (2019). https://doi.org/10.3390/v11010025

  18. Emanuel, J., Marzi, A., Feldmann, H.: Filoviruses: ecology, molecular biology, and evolution. Adv. Virus Res. 100, 189–221 (2018). https://doi.org/10.1016/bs.aivir.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  19. Volchkov, V.E., Feldmann, H., Volchkova, V.A., Klenk, H.D.: Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc. Natl. Acad. Sci. U. S. A. 95, 5762–5767 (1998). https://doi.org/10.1073/pnas.95.10.5762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maruyama, J., et al.: Characterization of the envelope glycoprotein of a novel filovirus, lloviu virus. J. Virol. 88, 99–109 (2014). https://doi.org/10.1128/JVI.02265-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Manicassamy, B., et al.: Characterization of Marburg virus glycoprotein in viral entry. Virology. 358, 79–88 (2007). https://doi.org/10.1016/j.virol.2006.06.041

    Article  CAS  PubMed  Google Scholar 

  22. Lee, J.E., et al.: Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature. 454, 177–182 (2008). https://doi.org/10.1038/nature07082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mehedi, M., et al.: A new Ebola virus nonstructural glycoprotein expressed through RNA editing. J. Virol. 85, 5406–5414 (2011). https://doi.org/10.1128/JVI.02190-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Negredo, A., et al.: Discovery of an ebolavirus-like filovirus in europe. PLoS Pathog. 7, e1002304 (2011). https://doi.org/10.1371/journal.ppat.1002304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bhattacharyya, S.: Mechanisms of immune evasion by Ebola virus. Adv. Exp. Med. Biol. 1313, 15–22 (2021). https://doi.org/10.1007/978-3-030-67452-6_2

    Article  CAS  PubMed  Google Scholar 

  26. Jeffers, S.A., Sanders, D.A., Sanchez, A.: Covalent modifications of the ebola virus glycoprotein. J. Virol. 76, 12463–12472 (2002). https://doi.org/10.1128/jvi.76.24.12463-12472.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lennemann, N.J. et al.: Comprehensive functional analysis of N-linked glycans on Ebola virus GP1. mBio 5, e00862–00813 (2014). https://doi.org/10.1128/mBio.00862-13

  28. Takada, A., et al.: Downregulation of beta1 integrins by Ebola virus glycoprotein: implication for virus entry. Virology. 278, 20–26 (2000). https://doi.org/10.1006/viro.2000.0601

    Article  CAS  PubMed  Google Scholar 

  29. Schornberg, K.L., et al.: Alpha5beta1-integrin controls ebolavirus entry by regulating endosomal cathepsins. Proc. Natl. Acad. Sci. U. S. A. 106, 8003–8008 (2009). https://doi.org/10.1073/pnas.0807578106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rasmussen, A.L.: Host factors in Ebola infection. Annu. Rev. Genomics Hum. Genet. 17, 333–351 (2016). https://doi.org/10.1146/annurev-genom-083115-022446

    Article  CAS  PubMed  Google Scholar 

  31. Aleksandrowicz, P., et al.: Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J. Infect. Dis. 204(Suppl 3), S957–S967 (2011). https://doi.org/10.1093/infdis/jir326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carette, J.E., et al.: Ebola virus entry requires the cholesterol transporter Niemann-pick C1. Nature. 477, 340–343 (2011). https://doi.org/10.1038/nature10348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sharma, A.R., Lee, Y.H., Nath, S., Lee, S.S.: Recent developments and strategies of Ebola virus vaccines. Curr. Opin. Pharmacol. 60, 46–53 (2021). https://doi.org/10.1016/j.coph.2021.06.008

    Article  CAS  PubMed  Google Scholar 

  34. Matz, K.M., Marzi, A., Feldmann, H.: Ebola vaccine trials: progress in vaccine safety and immunogenicity. Expert Rev. Vaccines. 18, 1229–1242 (2019). https://doi.org/10.1080/14760584.2019.1698952

    Article  CAS  PubMed  Google Scholar 

  35. Iversen, P.L., et al.: Recent successes in therapeutics for Ebola virus disease: no time for complacency. Lancet Infect. Dis. 20, e231–e237 (2020). https://doi.org/10.1016/S1473-3099(20)30282-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Edwards, M.R., Basler, C.F.: Current status of small molecule drug development for Ebola virus and other filoviruses. Curr. Opin. Virol. 35, 42–56 (2019). https://doi.org/10.1016/j.coviro.2019.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kerper, M., Puckett, Y.: In StatPearls (2022)

    Google Scholar 

  38. Sinn, P.L., Coffin, J.E., Ayithan, N., Holt, K.H., Maury, W.: Lentiviral vectors Pseudotyped with filoviral glycoproteins. Methods Mol. Biol. 1628, 65–78 (2017). https://doi.org/10.1007/978-1-4939-7116-9_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brouillette, R.B., Maury, W.: Production of filovirus glycoprotein-Pseudotyped vesicular stomatitis virus for study of filovirus entry mechanisms. Methods Mol. Biol. 1628, 53–63 (2017). https://doi.org/10.1007/978-1-4939-7116-9_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, Y., et al.: Protection against lethal challenge by Ebola virus-like particles produced in insect cells. Virology. 383, 12–21 (2009). https://doi.org/10.1016/j.virol.2008.09.020

    Article  CAS  PubMed  Google Scholar 

  41. Hoenen, T., Groseth, A., de Kok-Mercado, F., Kuhn, J.H., Wahl-Jensen, V.: Minigenomes, transcription and replication competent virus-like particles and beyond: reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antivir. Res. 91, 195–208 (2011). https://doi.org/10.1016/j.antiviral.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  42. Hoenen, T., Watt, A., Mora, A., Feldmann, H.: Modeling the lifecycle of Ebola virus under biosafety level 2 conditions with virus-like particles containing tetracistronic minigenomes. J. Vis. Exp. 52381 (2014). https://doi.org/10.3791/52381

  43. Wang, B., et al.: Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function. J. Biol. Chem. 292, 5860–5870 (2017). https://doi.org/10.1074/jbc.M116.768168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johansen, L.M., et al.: A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci. Transl. Med. 7, 290ra289 (2015). https://doi.org/10.1126/scitranslmed.aaa5597

    Article  CAS  Google Scholar 

  45. Cheng, H., et al.: Inhibition of Ebola and Marburg virus entry by G protein-coupled receptor antagonists. J. Virol. 89, 9932–9938 (2015). https://doi.org/10.1128/JVI.01337-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng, H., et al.: Identification of a coumarin-based antihistamine-like small molecule as an anti-filoviral entry inhibitor. Antivir. Res. 145, 24–32 (2017). https://doi.org/10.1016/j.antiviral.2017.06.015

    Article  CAS  PubMed  Google Scholar 

  47. Steffen, I., et al.: Serologic prevalence of Ebola virus in equatorial Africa. Emerg. Infect. Dis. 25, 911–918 (2019). https://doi.org/10.3201/eid2505.180115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Davidson, E., et al.: Mechanism of binding to Ebola virus glycoprotein by the ZMapp, ZMAb, and MB-003 cocktail antibodies. J. Virol. 89, 10982–10992 (2015). https://doi.org/10.1128/JVI.01490-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rimoin, A.W., et al.: Ebola virus neutralizing antibodies detectable in survivors of theYambuku, Zaire outbreak 40 years after infection. J. Infect. Dis. 217, 223–231 (2018). https://doi.org/10.1093/infdis/jix584

    Article  CAS  PubMed  Google Scholar 

  50. Bramble, M.S., et al.: Pan-filovirus serum neutralizing antibodies in a subset of Congolese ebolavirus infection survivors. J. Infect. Dis. 218, 1929–1936 (2018). https://doi.org/10.1093/infdis/jiy453

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gnirss, K., et al.: Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression. Virology. 424, 3–10 (2012). https://doi.org/10.1016/j.virol.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  52. Wu, F., et al.: A chimeric Sudan virus-like particle vaccine candidate produced by a recombinant baculovirus system induces specific immune responses in mice and horses. Viruses. 12 (2020). https://doi.org/10.3390/v12010064

  53. Xie, L., Zai, J., Yi, K., Li, Y.: Intranasal immunization with recombinant vaccinia virus Tiantan harboring Zaire Ebola virus gp elicited systemic and mucosal neutralizing antibody in mice. Vaccine. 37, 3335–3342 (2019). https://doi.org/10.1016/j.vaccine.2019.04.070

    Article  PubMed  Google Scholar 

  54. Manicassamy, B., Wang, J., Jiang, H., Rong, L.: Comprehensive analysis of ebola virus GP1 in viral entry. J. Virol. 79, 4793–4805 (2005). https://doi.org/10.1128/JVI.79.8.4793-4805.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jiang, H., et al.: The role of the charged residues of the GP2 helical regions in Ebola entry(). Virol. Sin. 24, 121–135 (2009). https://doi.org/10.1007/s12250-009-3015-6

    Article  CAS  PubMed  Google Scholar 

  56. Yermolina, M.V., Wang, J., Caffrey, M., Rong, L.L., Wardrop, D.J.: Discovery, synthesis, and biological evaluation of a novel group of selective inhibitors of filoviral entry. J. Med. Chem. 54, 765–781 (2011). https://doi.org/10.1021/jm1008715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ji, X., et al.: Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization. J. Gen. Virol. 86, 2535–2542 (2005). https://doi.org/10.1099/vir.0.81199-0

    Article  CAS  PubMed  Google Scholar 

  58. Brudner, M., et al.: Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors. PLoS One. 8, e60838 (2013). https://doi.org/10.1371/journal.pone.0060838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Luczkowiak, J., et al.: Specific neutralizing response in plasma from convalescent patients of Ebola virus disease against the West Africa Makona variant of Ebola virus. Virus Res. 213, 224–229 (2016). https://doi.org/10.1016/j.virusres.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  60. Wang, J., Manicassamy, B., Caffrey, M., Rong, L.: Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry. Virol. Sin. 26, 156–170 (2011). https://doi.org/10.1007/s12250-011-3194-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chan, S.Y., Speck, R.F., Ma, M.C., Goldsmith, M.A.: Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J. Virol. 74, 4933–4937 (2000). https://doi.org/10.1128/jvi.74.10.4933-4937.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Simmons, G., et al.: DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology. 305, 115–123 (2003). https://doi.org/10.1006/viro.2002.1730

    Article  CAS  PubMed  Google Scholar 

  63. Chan, S.Y., et al.: Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Cell. 106, 117–126 (2001). https://doi.org/10.1016/s0092-8674(01)00418-4

    Article  CAS  PubMed  Google Scholar 

  64. Simmons, G., et al.: Folate receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection. J. Virol. 77, 13433–13438 (2003). https://doi.org/10.1128/jvi.77.24.13433-13438.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, Q., et al.: Novel cyclo-peptides inhibit Ebola pseudotyped virus entry by targeting primed GP protein. Antivir. Res. 155, 1–11 (2018). https://doi.org/10.1016/j.antiviral.2018.04.020

    Article  CAS  PubMed  Google Scholar 

  66. Yonezawa, A., Cavrois, M., Greene, W.C.: Studies of ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions: involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha. J. Virol. 79, 918–926 (2005). https://doi.org/10.1128/JVI.79.2.918-926.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Diehl, W.E., et al.: Ebola virus glycoprotein with increased infectivity dominated the 2013-2016 epidemic. Cell. 167, 1088–1098 e1086 (2016). https://doi.org/10.1016/j.cell.2016.10.014

    Article  CAS  Google Scholar 

  68. Zhang, L., et al.: A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. Hum. Vaccin. Immunother. 13, 1811–1817 (2017). https://doi.org/10.1080/21645515.2017.1325050

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang, X., et al.: Discovery and evolution of aloperine derivatives as novel anti-filovirus agents through targeting entry stage. Eur. J. Med. Chem. 149, 45–55 (2018). https://doi.org/10.1016/j.ejmech.2018.02.061

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, L., et al.: Screening and identification of Marburg virus entry inhibitors using approved drugs. Virol. Sin. 35, 235–239 (2020). https://doi.org/10.1007/s12250-019-00184-3

    Article  PubMed  Google Scholar 

  71. Adaken, C., et al.: Ebola virus antibody decay-stimulation in a high proportion of survivors. Nature. 590, 468–472 (2021). https://doi.org/10.1038/s41586-020-03146-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Manicassamy, B., Rong, L.: Expression of ebolavirus glycoprotein on the target cells enhances viral entry. Virol. J. 6, 75 (2009). https://doi.org/10.1186/1743-422X-6-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kobinger, G.P., Weiner, D.J., Yu, Q.C., Wilson, J.M.: Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat. Biotechnol. 19, 225–230 (2001). https://doi.org/10.1038/85664

    Article  CAS  PubMed  Google Scholar 

  74. Medina, M.F., et al.: Lentiviral vectors pseudotyped with minimal filovirus envelopes increased gene transfer in murine lung. Mol. Ther. 8, 777–789 (2003). https://doi.org/10.1016/j.ymthe.2003.07.003

    Article  CAS  PubMed  Google Scholar 

  75. Sullivan, N.J., et al.: Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs. PLoS Med. 3, e177 (2006). https://doi.org/10.1371/journal.pmed.0030177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bentley, E.M., et al.: Cross-neutralisation of novel Bombali virus by Ebola virus antibodies and convalescent plasma using an optimised Pseudotype-based neutralisation assay. Trop Med Infect Dis. 6 (2021). https://doi.org/10.3390/tropicalmed6030155

  77. Shimojima, M., Ikeda, Y., Kawaoka, Y.: The mechanism of Axl-mediated Ebola virus infection. J. Infect. Dis. 196(Suppl 2), S259–S263 (2007). https://doi.org/10.1086/520594

    Article  CAS  PubMed  Google Scholar 

  78. Brindley, M.A., et al.: Ebola virus glycoprotein 1: identification of residues important for binding and postbinding events. J. Virol. 81, 7702–7709 (2007). https://doi.org/10.1128/JVI.02433-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hunt, C.L., Kolokoltsov, A.A., Davey, R.A., Maury, W.: The Tyro3 receptor kinase Axl enhances macropinocytosis of Zaire ebolavirus. J. Virol. 85, 334–347 (2011). https://doi.org/10.1128/JVI.01278-09

    Article  CAS  PubMed  Google Scholar 

  80. Sandrin, V., et al.: Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood. 100, 823–832 (2002). https://doi.org/10.1182/blood-2001-11-0042

    Article  CAS  PubMed  Google Scholar 

  81. Wang, M.K., Lim, S.Y., Lee, S.M., Cunningham, J.M.: Biochemical basis for increased activity of Ebola glycoprotein in the 2013-16 epidemic. Cell Host Microbe. 21, 367–375 (2017). https://doi.org/10.1016/j.chom.2017.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kuhn, J.H., et al.: Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J. Biol. Chem. 281, 15951–15958 (2006). https://doi.org/10.1074/jbc.M601796200

    Article  CAS  PubMed  Google Scholar 

  83. Jemielity, S., et al.: TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog. 9, e1003232 (2013). https://doi.org/10.1371/journal.ppat.1003232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stewart, C.M., et al.: Ebola virus triggers receptor tyrosine kinase-dependent signaling to promote the delivery of viral particles to entry-conducive intracellular compartments. PLoS Pathog. 17, e1009275 (2021). https://doi.org/10.1371/journal.ppat.1009275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wool-Lewis, R.J., Bates, P.: Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J. Virol. 72, 3155–3160 (1998). https://doi.org/10.1128/JVI.72.4.3155-3160.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mpanju, O.M., Towner, J.S., Dover, J.E., Nichol, S.T., Wilson, C.A.: Identification of two amino acid residues on Ebola virus glycoprotein 1 critical for cell entry. Virus Res. 121, 205–214 (2006). https://doi.org/10.1016/j.virusres.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  87. Urbanowicz, R.A., et al.: Human adaptation of Ebola virus during the west African outbreak. Cell. 167, 1079–1087 e1075 (2016). https://doi.org/10.1016/j.cell.2016.10.013

    Article  CAS  Google Scholar 

  88. Miao, C., Li, M., Zheng, Y.M., Cohen, F.S., Liu, S.L.: Cell-cell contact promotes Ebola virus GP-mediated infection. Virology. 488, 202–215 (2016). https://doi.org/10.1016/j.virol.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  89. Shimojima, M., et al.: Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J. Virol. 80, 10109–10116 (2006). https://doi.org/10.1128/JVI.01157-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Takada, A., et al.: A system for functional analysis of Ebola virus glycoprotein. Proc. Natl. Acad. Sci. U. S. A. 94, 14764–14769 (1997). https://doi.org/10.1073/pnas.94.26.14764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hoffmann, M., Gonzalez Hernandez, M., Berger, E., Marzi, A., Pohlmann, S.: The glycoproteins of all filovirus species use the same host factors for entry into bat and human cells but entry efficiency is species dependent. PLoS One. 11, e0149651 (2016). https://doi.org/10.1371/journal.pone.0149651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hoffmann, M., et al.: A polymorphism within the internal fusion loop of the Ebola virus glycoprotein modulates host cell entry. J. Virol. 91 (2017). https://doi.org/10.1128/JVI.00177-17

  93. Ueda, M.T., et al.: Functional mutations in spike glycoprotein of Zaire ebolavirus associated with an increase in infection efficiency. Genes Cells. 22, 148–159 (2017). https://doi.org/10.1111/gtc.12463

    Article  CAS  PubMed  Google Scholar 

  94. Liu, Q., et al.: Antibody-dependent-cellular-cytotoxicity-inducing antibodies significantly affect the post-exposure treatment of Ebola virus infection. Sci. Rep. 7, 45552 (2017). https://doi.org/10.1038/srep45552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Powell, T.J., Silk, J.D., Sharps, J., Fodor, E., Townsend, A.R.: Pseudotyped influenza a virus as a vaccine for the induction of heterotypic immunity. J. Virol. 86, 13397–13406 (2012). https://doi.org/10.1128/JVI.01820-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xiao, J.H., et al.: Characterization of influenza virus Pseudotyped with ebolavirus glycoprotein. J. Virol. 92 (2018). https://doi.org/10.1128/JVI.00941-17

  97. Rijal, P., et al.: Therapeutic monoclonal antibodies for Ebola virus infection derived from vaccinated humans. Cell Rep. 27, 172–186 e177 (2019). https://doi.org/10.1016/j.celrep.2019.03.020

    Article  CAS  Google Scholar 

  98. Urbanowicz, R.A., et al.: Novel functional hepatitis C virus glycoprotein isolates identified using an optimized viral pseudotype entry assay. J. Gen. Virol. 97, 2265–2279 (2016). https://doi.org/10.1099/jgv.0.000537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Steeds, K., et al.: Pseudotyping of VSV with Ebola virus glycoprotein is superior to HIV-1 for the assessment of neutralising antibodies. Sci. Rep. 10, 14289 (2020). https://doi.org/10.1038/s41598-020-71225-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Konduru, K., Shurtleff, A.C., Bavari, S., Kaplan, G.: High degree of correlation between Ebola virus BSL-4 neutralization assays and pseudotyped VSV BSL-2 fluorescence reduction neutralization test. J. Virol. Methods. 254, 1–7 (2018). https://doi.org/10.1016/j.jviromet.2018.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ilinykh, P.A., et al.: Chimeric filoviruses for identification and characterization of monoclonal antibodies. J. Virol. 90, 3890–3901 (2016). https://doi.org/10.1128/JVI.00101-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Warfield, K.L., et al.: Role of antibodies in protection against Ebola virus in nonhuman primates immunized with three vaccine platforms. J. Infect. Dis. 218, S553–S564 (2018). https://doi.org/10.1093/infdis/jiy316

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yang, R., et al.: Neutralizing antibody Titer test of Ebola recombinant protein vaccine and gene vector vaccine pVR-GP-FC. Biomed. Environ. Sci. 31, 721–728 (2018). https://doi.org/10.3967/bes2018.097

    Article  CAS  PubMed  Google Scholar 

  104. Shuai, L., et al.: Genetically modified rabies virus-vectored Ebola virus disease vaccines are safe and induce efficacious immune responses in mice and dogs. Antivir. Res. 146, 36–44 (2017). https://doi.org/10.1016/j.antiviral.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  105. Mupapa, K., et al.: Treatment of Ebola hemorrhagic fever with blood transfusions from convalescent patients. International scientific and technical committee. J. Infect. Dis. 179(Suppl 1), S18–S23 (1999). https://doi.org/10.1086/514298

    Article  PubMed  Google Scholar 

  106. Gupta, M., Mahanty, S., Bray, M., Ahmed, R., Rollin, P.E.: Passive transfer of antibodies protects immunocompetent and imunodeficient mice against lethal Ebola virus infection without complete inhibition of viral replication. J. Virol. 75, 4649–4654 (2001). https://doi.org/10.1128/JVI.75.10.4649-4654.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jahrling, P.B., et al.: Passive immunization of Ebola virus-infected cynomolgus monkeys with immunoglobulin from hyperimmune horses. Arch. Virol. Suppl. 11, 135–140 (1996). https://doi.org/10.1007/978-3-7091-7482-1_12

    Article  CAS  PubMed  Google Scholar 

  108. Audet, J., et al.: Molecular characterization of the monoclonal antibodies composing ZMAb: a protective cocktail against Ebola virus. Sci. Rep. 4, 6881 (2014). https://doi.org/10.1038/srep06881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Saphire, E.O., Schendel, S.L., Gunn, B.M., Milligan, J.C., Alter, G.: Antibody-mediated protection against Ebola virus. Nat. Immunol. 19, 1169–1178 (2018). https://doi.org/10.1038/s41590-018-0233-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brannan, J.M., et al.: Post-exposure immunotherapy for two ebolaviruses and Marburg virus in nonhuman primates. Nat. Commun. 10, 105 (2019). https://doi.org/10.1038/s41467-018-08040-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Flyak, A.I., et al.: Mechanism of human antibody-mediated neutralization of Marburg virus. Cell. 160, 893–903 (2015). https://doi.org/10.1016/j.cell.2015.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Howell, K.A., et al.: Antibody treatment of Ebola and Sudan virus infection via a uniquely exposed epitope within the glycoprotein receptor-binding site. Cell Rep. 15, 1514–1526 (2016). https://doi.org/10.1016/j.celrep.2016.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Oswald, W.B., et al.: Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys. PLoS Pathog. 3, e9 (2007). https://doi.org/10.1371/journal.ppat.0030009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ilinykh, P.A., et al.: Non-neutralizing antibodies from a Marburg infection survivor mediate protection by fc-effector functions and by enhancing efficacy of other antibodies. Cell Host Microbe. 27, 976–991 e911 (2020). https://doi.org/10.1016/j.chom.2020.03.025

    Article  CAS  Google Scholar 

  115. Koellhoffer, J.F., et al.: Two synthetic antibodies that recognize and neutralize distinct proteolytic forms of the ebola virus envelope glycoprotein. Chembiochem. 13, 2549–2557 (2012). https://doi.org/10.1002/cbic.201200493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Takada, A., Watanabe, S., Okazaki, K., Kida, H., Kawaoka, Y.: Infectivity-enhancing antibodies to Ebola virus glycoprotein. J. Virol. 75, 2324–2330 (2001). https://doi.org/10.1128/JVI.75.5.2324-2330.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Takada, A., Ebihara, H., Feldmann, H., Geisbert, T.W., Kawaoka, Y.: Epitopes required for antibody-dependent enhancement of Ebola virus infection. J. Infect. Dis. 196(Suppl 2), S347–S356 (2007). https://doi.org/10.1086/520581

    Article  CAS  PubMed  Google Scholar 

  118. Nakayama, E., et al.: Antibody-dependent enhancement of Marburg virus infection. J. Infect. Dis. 204(Suppl 3), S978–S985 (2011). https://doi.org/10.1093/infdis/jir334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ito, H., Watanabe, S., Sanchez, A., Whitt, M.A., Kawaoka, Y.: Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J. Virol. 73, 8907–8912 (1999). https://doi.org/10.1128/JVI.73.10.8907-8912.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Iwasa, A., Shimojima, M., Kawaoka, Y.: sGP serves as a structural protein in Ebola virus infection. J. Infect. Dis. 204(Suppl 3), S897–S903 (2011). https://doi.org/10.1093/infdis/jir313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ito, H., Watanabe, S., Takada, A., Kawaoka, Y.: Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J. Virol. 75, 1576–1580 (2001). https://doi.org/10.1128/JVI.75.3.1576-1580.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chandran, K., Sullivan, N.J., Felbor, U., Whelan, S.P., Cunningham, J.M.: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science. 308, 1643–1645 (2005). https://doi.org/10.1126/science.1110656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schornberg, K., et al.: Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J. Virol. 80, 4174–4178 (2006). https://doi.org/10.1128/JVI.80.8.4174-4178.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gonzalez-Hernandez, M., Muller, A., Hoenen, T., Hoffmann, M., Pohlmann, S.: Calu-3cells are largely resistant to entry driven by filovirus glycoproteins and the entry defect can be rescued by directed expression of DC-SIGN or cathepsin L. Virology. 532, 22–29 (2019). https://doi.org/10.1016/j.virol.2019.03.020

    Article  CAS  PubMed  Google Scholar 

  125. Misasi, J., et al.: Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences. J. Virol. 86, 3284–3292 (2012). https://doi.org/10.1128/JVI.06346-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Miller, E.H., et al.: Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J. 31, 1947–1960 (2012). https://doi.org/10.1038/emboj.2012.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bornholdt, Z.A. et al.: Host-primed Ebola virus GP exposes a hydrophobic NPC1 receptor-binding pocket, revealing a target for broadly neutralizing antibodies. mBio. 7, e02154–02115 (2016). https://doi.org/10.1128/mBio.02154-15

  128. Martinez, O., et al.: A mutation in the Ebola virus envelope glycoprotein restricts viral entry in a host species- and cell-type-specific manner. J. Virol. 87, 3324–3334 (2013). https://doi.org/10.1128/JVI.01598-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Spence, J.S., Krause, T.B., Mittler, E., Jangra, R.K., Chandran, K.: Direct visualization of Ebola virus fusion triggering in the endocytic pathway. MBio. 7, e01857–e01815 (2016). https://doi.org/10.1128/mBio.01857-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mittler, E., Alkutkar, T., Jangra, R.K., Chandran, K.: Direct intracellular visualization of Ebola virus-receptor interaction by in situ proximity ligation. MBio. 12 (2021). https://doi.org/10.1128/mBio.03100-20

  131. Kuroda, M., Halfmann, P., Kawaoka, Y.: HER2-mediated enhancement of Ebola virus entry. PLoS Pathog. 16, e1008900 (2020). https://doi.org/10.1371/journal.ppat.1008900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Miller, M.E., Adhikary, S., Kolokoltsov, A.A., Davey, R.A.: Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J. Virol. 86, 7473–7483 (2012). https://doi.org/10.1128/JVI.00136-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Alvarez, C.P., et al.: C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 76, 6841–6844 (2002). https://doi.org/10.1128/jvi.76.13.6841-6844.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yu, C., et al.: MARCH8 inhibits Ebola virus glycoprotein, human immunodeficiency virus type 1 envelope glycoprotein, and avian influenza virus H5N1 hemagglutinin maturation. MBio. 11 (2020). https://doi.org/10.1128/mBio.01882-20

  135. Stantchev, T.S., et al.: Cytokine effects on the entry of filovirus envelope Pseudotyped virus-like particles into primary human macrophages. Viruses. 11 (2019). https://doi.org/10.3390/v11100889

  136. Usami, K., et al.: Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin. Biochem. Biophys. Res. Commun. 407, 74–78 (2011). https://doi.org/10.1016/j.bbrc.2011.02.110

    Article  CAS  PubMed  Google Scholar 

  137. Fujihira, H., et al.: A critical domain of ebolavirus envelope glycoprotein determines Glycoform and infectivity. Sci. Rep. 8, 5495 (2018). https://doi.org/10.1038/s41598-018-23357-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Basu, A., Mills, D.M., Bowlin, T.L.: High-throughput screening of viral entry inhibitors using pseudotyped virus. Curr. Protoc. Pharmacol.. Chapter 13, Unit 13B 13. (2010). https://doi.org/10.1002/0471141755.ph13b03s51

  139. Yang, Y., et al.: A cell-based high-throughput protocol to screen entry inhibitors of highly pathogenic viruses with traditional Chinese medicines. J. Med. Virol. 89, 908–916 (2017). https://doi.org/10.1002/jmv.24705

    Article  CAS  PubMed  Google Scholar 

  140. Cui, Q., et al.: Identification of ellagic acid from plant Rhodiola rosea L. as an anti-Ebola virus entry inhibitor. Viruses. 10 (2018). https://doi.org/10.3390/v10040152

  141. Madrid, P.B., et al.: A systematic screen of FDA-approved drugs for inhibitors of biological threat agents. PLoS One. 8, e60579 (2013). https://doi.org/10.1371/journal.pone.0060579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lei, S., Huang, W., Wang, Y., Liu, Q.: In vivo bioluminescent imaging of Marburg virus in a rodent model. Methods Mol. Biol. 2081, 177–190 (2020). https://doi.org/10.1007/978-1-4939-9940-8_12

    Article  PubMed  Google Scholar 

  143. Duffy, S.: Why are RNA virus mutation rates so damn high? PLoS Biol. 16, e3000003 (2018). https://doi.org/10.1371/journal.pbio.3000003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li, Q., et al.: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell. 182, 1284–1294.e1289 (2020). https://doi.org/10.1016/j.cell.2020.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fels, J.M., et al.: A glycoprotein mutation that emerged during the 2013-2016 Ebola virus epidemic alters proteolysis and accelerates membrane fusion. MBio. 12 (2021). https://doi.org/10.1128/mBio.03616-20

  146. Dietzel, E., Schudt, G., Krahling, V., Matrosovich, M., Becker, S.: Functional characterization of adaptive mutations during the west African Ebola virus outbreak. J. Virol. 91 (2017). https://doi.org/10.1128/JVI.01913-16

  147. Gregory, S.M., et al.: Structure and function of the complete internal fusion loop from ebolavirus glycoprotein 2. Proc. Natl. Acad. Sci. U. S. A. 108, 11211–11216 (2011). https://doi.org/10.1073/pnas.1104760108

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kurosaki, Y., et al.: Different effects of two mutations on the infectivity of Ebola virus glycoprotein in nine mammalian species. J. Gen. Virol. 99, 181–186 (2018). https://doi.org/10.1099/jgv.0.000999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Banadyga, L., et al.: Atypical Ebola virus disease in a nonhuman primate following monoclonal antibody treatment is associated with glycoprotein mutations within the fusion loop. MBio. 12 (2021). https://doi.org/10.1128/mBio.01438-20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youchun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Liu, S., Wang, Y. (2023). Pseudotyped Viruses for Marburgvirus and Ebolavirus. In: Wang, Y. (eds) Pseudotyped Viruses. Advances in Experimental Medicine and Biology, vol 1407. Springer, Singapore. https://doi.org/10.1007/978-981-99-0113-5_6

Download citation

Publish with us

Policies and ethics