Skip to main content

Combinatorial Reconfiguration with Answer Set Programming: Algorithms, Encodings, and Empirical Analysis

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2024)

Abstract

We propose an approach called bounded combinatorial reconfiguration for solving combinatorial reconfiguration problems based on Answer Set Programming (ASP). The general task is to study the solution spaces of combinatorial problems and to decide whether or not there are sequences of feasible solutions that have special properties. The resulting recongo solver covers all metrics of the solver track in the most recent international competition on combinatorial reconfiguration (CoRe Challenge 2022). recongo ranked first in the shortest metric of the single-engine solvers track. In this paper, we present the design and algorithm of bounded combinatorial reconfiguration, and also present ASP encodings of the independent set reconfiguration problem under the token jumping rule that is one of the most studied combinatorial reconfiguration problems. Finally, we present empirical analysis considering all instances of CoRe Challenge 2022.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An overview of recongo is given in a short paper [28]. The present paper gives more detailed algorithms, encodings, and empirical analysis of bounded combinatorial reconfiguration.

  2. 2.

    https://core-challenge.github.io/2022/.

  3. 3.

    https://core-challenge.github.io/2022/.

References

  1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  2. Biere, A.: Bounded model checking. In: Handbook of Satisfiability, pp. 457–481. IOS Press (2009)

    Google Scholar 

  3. Bonsma, P.S., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theoret. Comput. Sci. 410(50), 5215–5226 (2009)

    Article  MathSciNet  Google Scholar 

  4. Brewster, R.C., McGuinness, S., Moore, B.R., Noel, J.A.: A dichotomy theorem for circular colouring reconfiguration. Theoret. Comput. Sci. 639, 1–13 (2016)

    Article  MathSciNet  Google Scholar 

  5. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theory 67(1), 69–82 (2011)

    Article  MathSciNet  Google Scholar 

  6. Christen, R., et al.: PARIS: planning algorithms for reconfiguring independent sets. In: Gal, K., Nowé, A., Nalepa, G.J., Fairstein, R., Radulescu, R. (eds.) Proceedings of the 26th European Conference on Artificial Intelligence (ECAI 2023). Frontiers in Artificial Intelligence and Applications, vol. 372, pp. 453–460. IOS Press (2023)

    Google Scholar 

  7. Erdem, E., Gelfond, M., Leone, N.: Applications of ASP. AI Mag. 37(3), 53–68 (2016)

    Google Scholar 

  8. Gebser, M., et al.: Potassco User Guide, 2nd edn. University of Potsdam (2015). http://potassco.org

  9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Morgan and Claypool Publishers, San Rafael (2012)

    Google Scholar 

  10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. Theory Pract. Logic Program. 19(1), 27–82 (2019)

    Article  MathSciNet  Google Scholar 

  11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium of Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press (1988)

    Google Scholar 

  12. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: Computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)

    Article  MathSciNet  Google Scholar 

  13. Haddadan, A., et al.: The complexity of dominating set reconfiguration. Theoret. Comput. Sci. 651, 37–49 (2016)

    Google Scholar 

  14. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013, London Mathematical Society Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013)

    Google Scholar 

  15. Hirate, T., et al.: Hamiltonian cycle reconfiguration with answer set programming. In: Gaggl, S.A., Martinez, M.V., Ortiz, M. (eds.) JELIA 2023. LNCS, vol. 14281, pp. 262–277. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43619-2_19

    Chapter  Google Scholar 

  16. Ito, T., et al.: On the complexity of reconfiguration problems. Theoret. Comput. Sci. 412(12–14), 1054–1065 (2011)

    Article  MathSciNet  Google Scholar 

  17. Ito, T., et al.: ZDD-based algorithmic framework for solving shortest reconfiguration problems. In: Ciré, A.A. (ed.) CPAIOR 2023. LNCS, vol. 13884, pp. 167–183. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33271-5_12

    Chapter  Google Scholar 

  18. Ito, T., Ono, H., Otachi, Y.: Reconfiguration of cliques in a graph. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 212–223. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17142-5_19

    Chapter  Google Scholar 

  19. Kaminski, M., Medvedev, P., Milanic, M.: Complexity of independent set reconfigurability problems. Theoret. Comput. Sci. 439, 9–15 (2012)

    Article  MathSciNet  Google Scholar 

  20. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th European Conference on Artificial Intelligence (ECAI 1992), pp. 359–363 (1992)

    Google Scholar 

  21. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solution space of Boolean formulas. SIAM J. Discret. Math. 31(3), 2185–2200 (2017)

    Article  MathSciNet  Google Scholar 

  22. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. Algorithmica 78(1), 274–297 (2017)

    Article  MathSciNet  Google Scholar 

  23. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

    Article  MathSciNet  Google Scholar 

  24. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)

    Article  MathSciNet  Google Scholar 

  25. Soh, T., Okamoto, Y., Ito, T.: Core challenge 2022: Solver and graph descriptions. CoRR abs/2208.02495 (2022)

    Google Scholar 

  26. Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets. J. Comb. Optim. 32(4), 1182–1195 (2016)

    Article  MathSciNet  Google Scholar 

  27. Takaoka, A.: Complexity of hamiltonian cycle reconfiguration. Algorithms 11(9), 140 (2018)

    Article  MathSciNet  Google Scholar 

  28. Yamada, Y., Banbara, M., Inoue, K., Schaub, T.: Recongo: bounded combinatorial reconfiguration with answer set programming. In: Gaggl, S.A., Martinez, M.V., Ortiz, M. (eds.) JELIA 2023. LNCS, vol. 14281, pp. 278–286. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43619-2_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutsunori Banbara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamada, Y., Banbara, M., Inoue, K., Schaub, T., Uehara, R. (2024). Combinatorial Reconfiguration with Answer Set Programming: Algorithms, Encodings, and Empirical Analysis. In: Uehara, R., Yamanaka, K., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2024. Lecture Notes in Computer Science, vol 14549. Springer, Singapore. https://doi.org/10.1007/978-981-97-0566-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0566-5_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0565-8

  • Online ISBN: 978-981-97-0566-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics