Skip to main content

Antennas in Automobile Radar

  • Reference work entry
  • First Online:
Handbook of Antenna Technologies

Abstract

Automobile radars are under investigation since the 1960s. The first operational systems are on the market since 1992 for buses and trucks and 1999 for passenger cars, both in the frequency range around 24 as well as 76.5 GHz; a new frequency band for medium- and short-range sensors from 77 to 81 GHz has been allocated recently in Europe. Requirements for the sensor antennas are high gain and low loss combined with small size and depth for vehicle integration. Great challenges are due to the millimeter-wave frequency range, and a great cost pressure for this commercial application determines design and fabrication. Consequently, planar antennas are dominating in the lower frequency range, while lens and reflector antennas had been the first choice at 76.5 GHz, partly in folded configurations. With increasing requirements toward a much more detailed view on the scenery in front or around the vehicle, multi-beam antennas or scanning antennas have been designed. For actual systems, digital beamforming with a number of integrated antennas is in use or under development, and also MIMO concepts will be exploited. With such development, antennas for automotive radar no longer can be considered as stand-alone devices, but will be part of an “imaging” system including multiple transmit/receive units and digital signal processing.

General antenna concepts, partly including system aspects, as well as several realized antenna and sensor configurations will be described in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Asano Y, Ohshima S, Harada T, Ogawa M, Nishikawa K (2001) Proposal of millimeter-wave holographic radar with antenna switching. IEEE Inter Microw Symp 2:1111–1114

    Google Scholar 

  • Bauer F, Menzel W (2011) A 79 GHz microstrip grid array antenna using a laminated waveguide feed in LTCC. In: IEEE AP-S/URSI symposium 2011, Spokane, pp 2067–2070

    Google Scholar 

  • Bauer F, Wang X, Menzel W, Stelzer A (2013) A 79-GHz radar sensor in LTCC technology using grid array antennas. IEEE Trans Microw Theory Tech 61:2514–2521

    Article  Google Scholar 

  • Bauer F, Menzel W (2013a) A 79-GHz resonant laminated waveguide slotted array antenna using novel shaped slots in LTCC. IEEE Antennas Wirel Propag Lett 12:296–299

    Article  Google Scholar 

  • Bauer F, Menzel W (2013b) A 79-GHz planar antenna array using ceramic filled cavity resonators in LTCC. IEEE Antennas Wirel Propag Lett 12:910–913

    Article  Google Scholar 

  • Binzer T, Klar M, Groß V (2007) Development of 77 GHz radar lens antennas for automotive applications based on given requirements. In: 2nd international ITG conference on antennas (INICA ’07 Munich), pp 205–209

    Google Scholar 

  • Brunner S, Stadler M, Wang X, Bauer F, Aichholzer K (2012) Advanced high frequency LTCC technology for applications beyond 60 GHz. In: Proceedings of the 8th international conference on Ceramic Interconnect and Ceramic Microsystems Technologies, Erfurt, pp 77–81

    Google Scholar 

  • Camiade M, Domnesque D, Ouarch Z, Sion A (2000) Fully MMIC-based front end for FMCW automotive radar at 77 GHz. In: Proceedings of the 30th European Microwave conference Paris, pp 1–4

    Google Scholar 

  • Carver KR, Mink JW (1981) Microstrip antenna technology. IEEE Trans Antennas Propag 9:2–24

    Article  Google Scholar 

  • Conti R, Toth J, Dowling T, Weiss J (1981) The wire grid microstrip antenna. IEEE Trans Antennas Propag 29:157–166

    Article  Google Scholar 

  • Feger R, Wagner C, Schuster S, Scheiblhofer S, Jäger H, Stelzer A (2009) A 77-GHz FMCW MIMO radar based on a SiGe single-chip transceiver. IEEE Trans Microw Theory Tech 57:1020–1035

    Article  Google Scholar 

  • Fitzek F, Rasshofer RH, Biebl EM (2010) Metamaterial matching of high-permittivity coatings for 79 GHz radar sensors. In: European Microwave conference, Paris, pp 1401–1404

    Google Scholar 

  • Frei M, Bauer M, Menzel W, Stelzer M (2011) A 79 GHz differentially fed grid array antenna. In: European Microwave conference, Manchester, pp 1320–1323

    Google Scholar 

  • Gresham I, Jain N, Budka T, Alexanian A, Kinayman N, Ziegner B, Brown S, Staecker P (2001) A compact manufacturable 76–77-GHz radar module for commercial ACC applications. IEEE Trans Microw Theory Tech 49:44–58

    Article  Google Scholar 

  • Gresham I, Jenkins A, Egri R, Eswarappa C, Kinayman N, Jain N, Anderson R, Kolak F, Wohlert R, Bennett J, Lanteri J-P (2004) Ultra-wideband radar sensors for short-range vehicular applications. IEEE Trans Microw Theory Tech 52:2105–2120

    Article  Google Scholar 

  • Hasch J, Topak E, Schnabel R, Zwick T, Weigel R, Waldschmidt C (2012) Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans Microw Theory Tech 60:845–860

    Article  Google Scholar 

  • Hirokawa J, Ando M (2000) 76 GHz post-wall waveguide fed parallel plate slot arrays for car-radar applications. IEEE Int Symp Antennas Propag 1:98–101

    Google Scholar 

  • Hymans AJ, Lait J (1960) Analysis of a frequency-modulated continuous-wave ranging system. Proc IEE Part B Electron Commun Eng 107:365–372

    Article  Google Scholar 

  • James JR, Hall PS, Wood C (1981) Microstrip antenna theory and design. Peregrinus, London

    Book  Google Scholar 

  • Kees N, Schmidhammer E, Detlefsen J (1995) Improvement of angular resolution of a millimeterwave imaging system by transmitter location multiplexing. IEEE Int Microw Symp 2:969–972

    Google Scholar 

  • Köhler M, Hasch J, Blöcher HL, Schmidt L-P (2013) Feasibility of automotive radar at frequencies beyond 100 GHz. Int J Microw Wirel Technol 5:49–54

    Article  Google Scholar 

  • Kraus J (1964) A backward angle-fire array antenna. IEEE Trans Antennas Propag 12:48–50

    Article  Google Scholar 

  • Massen J, Frei M, Menzel W, Möller U (2013) A 79 GHz SiGe short-range radar sensor for automotive applications. Int J Microw Wirel Technol 5:5–14

    Article  Google Scholar 

  • Mayer W, Gronau A, Menzel W, Leier H (2006) A compact 24 GHz sensor for beam-forming and imaging. In: 9th international conference on control, automation, robotics and vision (ICARV 2006 Singapore), pp 153–158

    Google Scholar 

  • Md Tan MN, Rahim SKA, Ali MT, Rahman TA (2008) Smart antenna: weight calculation and side-lobe reduction by unequal spacing technique. In: IEEE international RF and microwave conference, Kuala Lumpur, pp 441–445

    Google Scholar 

  • Manasson V, Sadovnik L, Mino R (1996) MMW scanning antenna. IEEE Aerosp Electron Syst Mag 11:29–33

    Article  Google Scholar 

  • Meinel HH, Dickmann J (2013) Automotive radar: from its origin to future directions. Microw J 56:24–40

    Google Scholar 

  • Menzel W, Pilz D, Al-Tikriti M (2002) MM-wave folded reflector antennas with high gain, low loss, and low profile. IEEE Antennas Propag Mag 44:24–29

    Article  Google Scholar 

  • Millitech Corporation (1994) Crash avoidance FLR sensors. Microw J 37:122–126

    Google Scholar 

  • Moffet A (1968) Minimum-redundancy linear arrays. IEEE Trans Antennas Propag 16:172–175

    Article  Google Scholar 

  • Pfeffer C, Feger R, Wagner C, Stelzer A (2013) FMCW MIMO radar system for frequency-division multiple TX-beamforming. IEEE Trans Microw Theory Tech 61:4262–4274

    Article  Google Scholar 

  • Pfeiffer UR (2012) Silicon CMOS/SiGe transceiver circuits for THz applications. In: IEEE 12th topical meeting on silicon monolithic integrated circuits in RF systems (SiRF), Santa Clara, pp 159–162

    Google Scholar 

  • Proakis JG, Manolakis DG (1996) Digital signal processing: principles, algorithms, and applications. Prentice-Hall International, Upper Saddle River

    Google Scholar 

  • Roy R, Paulraj A, Kailath T (1986) ESPRIT – a subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans Acoust Speech Signal Process 34:1340–1342

    Article  Google Scholar 

  • Russell ME, Crain A, Curran A, Campbell RA, Drubin CA, Miccioli WF (1997) Millimeter-wave radar sensor for automotive intelligent cruise control (ICC). IEEE Trans Microw Theory Tech 45:2444–2453

    Article  Google Scholar 

  • Sakakibara K, Mizutani A, Kikuma N, Hirayama K (2006) Design of narrow-wall slotted hollow waveguide array for arbitrarily linear polarization in the millimeter-wave band. In: IEEE international symposium on antennas propagation, Albuquerque, 3141–3144

    Google Scholar 

  • Schmidt R (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag 34:276–280

    Article  Google Scholar 

  • Shino N, Uchimura H, Miyazato K (2005) 77 GHz band antenna array substrate for short range car radar. In: IEEE MTT-S international microwave symposium Long Beach, pp 2095 – 2098

    Google Scholar 

  • Stelzer A, Feger R, Jahn M (2010) Highly-integrated multi-channel radar sensors in SiGe technology for automotive frequencies and beyond. In: ICECom conference, Dubrovnik, pp 1–11

    Google Scholar 

  • The (new) Cadillac Database©Dream Cars on Cadillac Chassis (2013) http://www.cadillacdatabase.org/Dbas_txt/Drm_cycl.htm. Last updated 23 May 2013

  • Tokoro S, Kuroda K, Kawakubo A, Fujita K, Fujinami H (2003) Electronically scanned millimeter-wave radar for pre-crash safety and adaptive cruise control system. In: Proceedings of the IEEE intelligent vehicles symposium Columbus, pp 304–309

    Google Scholar 

  • Winkler V, Feger R, Maurer L (2008) 79 GHz automotive short range radar sensor based on single-chip SiGe-transceivers. In: European Microwave conference, Amsterdam, pp 1616–1619

    Google Scholar 

  • Wojnowski M, Lachner R, Böck J, Wagner C, Starzer F, Sommer G, Pressel K, Weigel R (2011) Embedded wafer level ball grid array (eWLB) technology for millimeter-wave applications. In: IEEE 13th electronics packaging technology conference (EPTC), Singapore, pp 423–429

    Google Scholar 

  • Woll JD (1995) VORAD collision warning radar. In: IEEE international radar conference, Alexandria, pp 369–372

    Google Scholar 

  • Xu JF, Hong W, Chen P, Ke W (2009) Design and implementation of low sidelobe substrate integrated waveguide longitudinal slot array antennas. IET Microw Antennas Propag 4:790–797

    Article  Google Scholar 

  • Zhang B, Zhang YP (2012) Grid array antennas with subarrays and multiple feeds for 60-GHz radios. IEEE Trans Antennas Propag 60:2270–2275

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Bosch and Continental ADC for providing part of the material for this chapter. Other parts of the results shown here have been achieved by projects funded via the “RoCC project (project number 13 N9824) of the German Federal Ministry of Education and Research (BMBF)” and the “Austrian BMVIT and the Austrian Research Promotion Agency (FFG) within the co-funded project InRaS in the strategic objective FIT-IT Systems on Chip.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Menzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Menzel, W. (2016). Antennas in Automobile Radar. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_96

Download citation

Publish with us

Policies and ethics