Skip to main content

Energy-Harvesting Fabric Antenna

  • Living reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

The exploitation of novel fabrics, in place of standard substrates and metallizations, in the realization of radio-frequency energy-harvesting systems – commonly referred to as rectennas, rectifying antennas – for body area network applications is deeply discussed in this chapter. The use of these unconventional materials makes the design approach a delicate issue: firstly, the electromagnetic characterization of fabrics is needed; furthermore, the effects of bending of the whole system as well as the proximity to human tissue must be considered in the optimization procedure. The consequences of an approximate approach in the design of wearable rectennas could lead to significant deviations from the final prototype performance. For these reasons, we consider a computer-aided platform, which relies on the combination of full-wave solvers and nonlinear circuit-level tools, through the rigorous application of the electromagnetic theory: this way, the unavoidable electromagnetic couplings between different system sections and the dispersive/nonlinear behavior of the entire rectenna. In this way, the actual available power at the rectifier input port is accurately taken into account. The procedure is deeply described in this chapter through the stepwise analysis of the project of a fully wearable, fully autonomous tri-band rectenna. The experimental characterization of the prototype is used to provide a validation of the design procedure. The two-step procedure consists of the design of the rectenna with a fixed load in radio-frequency (RF) stationary conditions followed by the transient baseband design of the power management unit which acts as a dynamically variable load, depending on the actual incident RF power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Paradiso J, Starner T (2005) Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4(1):18–27. doi:10.1109/MPRV.2005.9

    Article  Google Scholar 

  2. Roundy S, Wright PK, Rabaey J (2003) A study of low-level vibrations as a power source for wireless sensor nodes. Comput Commun 26(11):1131–1144. doi:10.1016/S0140-3664(02)00248-7

    Article  Google Scholar 

  3. Wang Z, Leonov V, Fiorini P, Van Hoof C (2009) Realization of a wearable miniaturized thermoelectric generator for human body applications. Sens Actuators A 156(1):95–102. doi:10.1016/j.sna.2009.02.028

    Article  Google Scholar 

  4. Nasiri A, Zabalawi S, Mandic G (2009) Indoor power harvesting using photovoltaic cells for low-power applications. IEEE Trans Ind Electron 56(11):4502–4509. doi:10.1109/TIE.2009.2020703

    Article  Google Scholar 

  5. Paing T, Shin J, Zane R, Popovic Z (2008) Resistor emulation approach to low-power RF energy harvesting. IEEE Trans Power Electron 23(3):1494–1501. doi:10.1109/TPEL.2008.921167

    Article  Google Scholar 

  6. Chandrakasan A, Daly D, Kwong J, Ramadass Y (2008) Next generation micro-power systems. In: IEEE symposium on VLSI circuits, Honolulu, Hawaii, pp 2–5. doi:10.1109/VLSIC.2008.4585930

    Google Scholar 

  7. Rizzoli V, Costanzo A, Masotti D, Donzelli F (2010) Integration of numerical and field-theoretical techniques in the design of single- and multi-band rectennas for micro-power generation. EuMA Int J Microw Wirel Technol 2(3–4):293–303. doi:10.1017/S1759078710000553

    Article  Google Scholar 

  8. Boaventura AJS, Carvalho NB (2013) Extending reading range of commercial RFID readers. IEEE Trans Microw Theory Tech 61(1):633–640. doi:10.1109/TMTT.2012.2229288

    Article  Google Scholar 

  9. Collado A, Georgiadis A (2012) Improving wireless power transmission efficiency using chaotic waveforms. In: 2012 I.E. MTT-S international microwave symposium digest, Montreal, Canada, pp 13. doi:10.1109/MWSYM.2012.6259595

    Google Scholar 

  10. Masotti D, Costanzo A, Adami S (2011) Design and realization of a wearable multi-frequency Rf energy harvesting system. In: 5th European conference on antennas and propagation (EuCAP), Rome, Italy, pp 517–520

    Google Scholar 

  11. Monti G, Corchia L, Tarricone L (2013) UHF wearable rectenna on textile materials. IEEE Trans Antennas Propag 61(7):3869–3873. doi:10.1109/TAP.2013.2254693

    Article  Google Scholar 

  12. Kurian J, Rajan MNU, Sukumaran SK (2014) Flexible microstrip patch antenna using rubber substrate for WBAN applications. In: International conference on contemporary computing and informatics (IC3I), Mysore, India, pp 983–986. doi:10.1109/IC3I.2014.7019760

    Google Scholar 

  13. Hertleer C, Rogier H, Vallozzi L, Van Langenhove L (2009) A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Trans Antennas Propag 57(4):919–925. doi:10.1109/TAP.2009.2014574

    Article  Google Scholar 

  14. Hertleer C, Van Laere A, Rogier H, Van Langenhove L (2010) Influence of relative humidity on textile antenna performance. Text Res J 80:177–183. doi:10.1177/0040517509105696

    Article  Google Scholar 

  15. Declercq F, Couckuyt I, Rogier H, Dhaene T (2013) Environmental high frequency characterization of fabrics based on a novel surrogate modelling antenna technique. IEEE Trans Antennas Propag 61:5200–5213. doi:10.1109/TAP.2013.2274031

    Article  Google Scholar 

  16. Declercq F, Rogier H, Hertleer C (2008) Permittivity and loss tangent characterization for garment antennas based on a new matrix-pencil two-line method. IEEE Trans Antennas Propag 56(8):2548–2554. doi:10.1109/TAP.2008.927556

    Article  Google Scholar 

  17. Rizzoli V (1977) Resonance measurement of single- and coupled-microstrip propagation constants. IEEE Trans Microw Theory Tech 25(2):113–120. doi:10.1109/TMTT.1977.1129050

    Article  Google Scholar 

  18. Costanzo A, Donzelli F, Masotti D, Rizzoli V (2010) Rigorous design of RF multi-resonator power harvesters. In: Proceedings of the fourth European conference on antennas and propagation (EuCAP), Barcelona, Spain, pp 14

    Google Scholar 

  19. CST Microwave Studio (2012) http://www.cst.com

  20. Hagerty JA, Helmbrecht FB, McCalpin WH, Zane R, Popovic ZB (2004) Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans Microw Theory Tech 52(3):1014–1024. doi:10.1109/TMTT.2004.823585

    Article  Google Scholar 

  21. Masotti D, Costanzo A, Del Prete M, Rizzoli V (2013) A genetic-based design of a tetra-band high-efficiency RF energy harvesting system. IET Microw Antennas Propag 7(15):1254–1263. doi:10.1049/iet-map.2013.0056

    Article  Google Scholar 

  22. Collado A, Georgiadis A (2013) Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna. IEEE Trans Circuits Syst I Regul Pap 60(8):2225–2234. doi:10.1109/TCSI.2013.2239154

    Article  Google Scholar 

  23. Rizzoli V, Costanzo A, Masotti D, Donzelli F, Bichicchi G (2009) CAD of Multi-resonator rectenna for micro-power generation. In: European microwave conference (EuMC), Rome. Italy, pp 1684–1687

    Google Scholar 

  24. Costanzo A, Romani A, Masotti D, Arbizzani N, Rizzoli V (2012) RF/baseband co-design of switching receivers for multiband microwave energy harvesting. Elsevier J Sens Actuators A Phys 179(1):158–168. doi:10.1016/j.sna.2012.02.005

    Article  Google Scholar 

  25. Costanzo A, Masotti D, Donzelli F, Adami S (2012) Device to convert radiofrequency electromagnetic energy. Patent WO/2012/042348, PCT/IB2011/002253

    Google Scholar 

  26. Pinuela M, Mitcheson PD, Lucyszyn S (2013) Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans Microw Theory Tech 61(7):2715–2726. doi:10.1109/TMTT.2013.2262687

    Article  Google Scholar 

  27. Mok WC, Chair R, Luk KM, Lee K-F (2003) Wideband quarter-wave patch antenna with shorting pin. IEE Proc Microw Antennas Propag 150(1):56–60. doi:10.1049/ip-map:20030439

    Article  Google Scholar 

  28. Kan HK, Waterhouse RB (1999) Size reduction technique for shorted patches. Electron Lett 35(12):948–949. doi:10.1049/el:19990703

    Article  Google Scholar 

  29. Wu YS, Rosenbaum FJ (1973) Mode chart for microstrip ring resonators. IEEE Trans Microw Theory Tech 21(7):487–489. doi:10.1109/TMTT.1973.1128039

    Article  Google Scholar 

  30. Tang X, Mouthaan K (2009) 180° and 90° phase shifting networks with and octave bandwidth and small phase errors. IEEE Microw Wirel Compon Lett 19(8):506–508. doi:10.1109/LMWC.2009.2024837

    Article  Google Scholar 

  31. Boeykens F, Rogier H, Vallozzi L (2014) An efficient technique based on polynomial chaos to model the uncertainty in the resonance frequency of textile antennas due to bending. IEEE Trans Antennas Propag 62(3):1253–1260. doi:10.1109/TAP.2013.2294021

    Article  Google Scholar 

  32. Lemey S, Rogier H (2014) SIW textile antennas as a novel technology for UWB RFID tags. In: 2014 I.E. RFID technology and applications conference (RFID-TA), Tampere, Finland, pp 256–260. doi:10.1109/RFID-TA.2014.6934239

    Google Scholar 

  33. Lilja J, Salonen P, Kaija T, de Maagt P (2012) Design and manufacturing of robust textile antennas for harsh environments. IEEE Trans Antennas Propag 60(9):4130–4140. doi:10.1109/TAP.2012.2207035

    Article  Google Scholar 

  34. Rizzoli V, Masotti D, Mastri F, Montanari E (2011) System-oriented harmonic-balance algorithms for circuit-level simulation. IEEE Trans Comput Aided Des Integr Circuits Syst 30(2):256–269. doi:10.1109/TCAD.2010.2092250

    Article  Google Scholar 

  35. Rizzoli V, Costanzo A, Monti G (2004) General electromagnetic compatibility analysis for nonlinear microwave integrated circuits. In: IEEE MTT-S international microwave symposium, Fort Worth, Texas, pp 953–956. doi:10.1109/MWSYM.2004.1339135

    Google Scholar 

  36. Georgiadis A, Andia G, Collado A (2010) Rectenna design and optimization using reciprocity theory and harmonic balance analysis for electromagnetic (EM) energy harvesting. IEEE Antennas Wirel Propag Lett 9:444–446. doi:10.1109/LAWP.2010.2050131

    Article  Google Scholar 

  37. Essel J, Brenk D, Heidrich J, Weigel R (2009) A highly efficient UHF RFID frontend approach. In: IEEE MTT-S international microwave workshop on wireless sensing, local positioning, and RFID, pp 1–4. doi:10.1109/IMWS2.2009.5307866

    Google Scholar 

  38. Dolgov A, Zane R, Popovic Z (2010) Power management system for online low power RF energy harvesting optimization. IEEE Trans Circuits Syst I Regul Pap 7(7):1802–1811. doi:10.1109/TCSI.2009.2034891

    Article  Google Scholar 

  39. Rizzoli V, Costanzo A, Mastri F, Neri A (2003) A general SPICE model for arbitrary linear dispersive multiport components described by frequency-domain data. In: IEEE MTT-S international microwave symposium digest, Philadelphia, Pennsylvania, pp 9–12. doi:10.1109/MWSYM.2003.1210871

    Google Scholar 

  40. Dini M, Filippi M, Costanzo A, Romani A, Tartagni M, Del Prete M, Masotti D (2013) A fully-autonomous integrated RF energy harvesting system for wearable applications. In: European microwave conference (EuMC), Nuremberg, Germany, pp 987–990

    Google Scholar 

  41. Paing T, Falkenstein EA, Zane R, Popovic Z (2011) Custom IC for ultralow power RF energy scavenging. IEEE Trans Power Electron 26(6):1620–1626. doi:10.1109/TPEL.2010.2096475

    Article  Google Scholar 

  42. Costanzo A, Masotti D, Del Prete M (2013) Wireless power supplying flexible and wearable systems. In: Antennas and propagation (EuCAP), 7th European conference on, Gothenburg, Sweden, 8–12 Apr 2013, pp 2843, 2846

    Google Scholar 

  43. Costanzo A, Masotti D, Aldrigo M (2014) Compact, wearable antennas for battery-less systems exploiting fabrics and magneto-dielectric materials. Electronics 3(3):474–490

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Costanzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Costanzo, A., Masotti, D. (2015). Energy-Harvesting Fabric Antenna. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-68-0_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4451-68-0_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4451-68-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics