Skip to main content

Targeting SARS-CoV-2 Novel Corona (COVID-19) Virus Infection Using Medicinal Plants

  • Chapter
  • First Online:
Medicinal Plants for Lung Diseases

Abstract

The occurrence of coronavirus disease (COVID-19) pandemic is a global health crisis that has affected several parts of the globe. Therefore, there is an urgent need to search for a natural alternative to several synthetic drugs which have several side effects such as high level of resistance, higher toxicity, and high cost of producing them. Most of the people dwelling in the developing country are also affected with these challenges, most especially people in the rural area who could not afford the high cost of drugs for the management of this COVID-19. The application of medicinal plants has been recognized as a natural bioresource that could be applied for the management of COVID-19. Hence, this chapter intends to provide a detailed information on ancient and current literature on the antiviral activity of herbs on coronavirus. This will encourage the practice of using herbs medicines for the prevention and treatment of COVID-19 because at present there is no effective treatment for this infectious and deadly disease. This literature review might provide ideas for further researches on drug discovery and complementary treatment approach.

Relevant information on different types of techniques that could be utilized for targeting the SARS-CoV-2 novel corona (COVID-19) virus as well as specific examples medicinal plants that could be applied for the treatment of (COVID-19) virus were provided. Detailed information on some specific phytochemicals that serve as anti-COVID-19 was also highlighted. Also, adequate information on the application of bioinformatics and computation techniques which could enhance the biological activities of medicinal plants and their modes of action against (COVID-19) virus were provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kahn JS, Mcintosh K (2005) History and recent advances in coronavirus discovery. Pediatr Infect Dis J 24:S223–S227

    Article  PubMed  Google Scholar 

  2. Gorbalenya AE, Baker SC, Baric R, Groot RJD, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW (2020) Severe acute respiratory syndrome-related coronavirus: the species and its viruses–a statement of the Coronavirus Study Group

    Google Scholar 

  3. WHO (2020) Coronavirus disease 2019 (COVID-19): situation report, 73

    Google Scholar 

  4. Worldometer (2020) Pakistan coronavirus: 306,886 cases and 6,424 deaths—Worldometer [online]. Accessed Sept 2020

    Google Scholar 

  5. Khan S, Liu J, Xue M (2020) Transmission of SARS-CoV-2, required developments in research and associated public health concerns. Front Med 7:310. https://doi.org/10.3389/fmed.2020.00310

    Article  Google Scholar 

  6. Benarba B, Pandiella A (2020) Medicinal plants as sources of active molecules against COVID-19. Front Pharmacol 11:1189. https://doi.org/10.3389/fphar.2020.01189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang S, Hillyer C, Du L (2020) Neutralizing antibodies against SARSCoV- 2 and other human coronaviruses. Trends Immunol 41(5):355–359. https://doi.org/10.1016/j.it.2020.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rabi F, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD (2020) SARS-CoV-2CoV-2 and coronavirus disease 2019: what we know so far. Pathogens 9(3):231. https://doi.org/10.3390/pathogens9030231

    Article  CAS  PubMed Central  Google Scholar 

  9. Patel A, Jernigan DB (2020) Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak—United States, December 31, 2019–February 4, 2020. Morbidity and mortality weekly report, p 69, 140

    Google Scholar 

  10. Yang Y, Md Sahidul I, Jin W, Yuan L, Xin C (2020) Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. Int J Biol Sci 16(10):1708–1717. https://doi.org/10.7150/ijbs.45538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Petrovska BB (2012) Historical review of medicinal plants’ usage. Pharmacogn Rev 6:1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li H, Wang YM, Xu JY, Cao B (2020) Potential antiviral therapeutics for 2019 novel coronavirus. Chin J Tuberc Respir Dis 43(3):170–172. https://doi.org/10.3760/cma.j.issn.1001-0939.2020.03.004

    Article  CAS  Google Scholar 

  13. Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY (2007) Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 74(2):92–101. https://doi.org/10.1016/j.antiviral.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  14. Matsuyama S, Nao N, Shirato K, Kawase M, Saito S, Takayama I et al (2020) Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A 117(13):7001–7003. https://doi.org/10.1073/pnas.2002589117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schlagenhauf P, Grobusch MP, Maier JD, Gautret P (2020) Repurposing antimalarials and other drugs for COVID-19. Travel Med Infect Dis 34:101658. https://doi.org/10.1016/j.tmaid.2020.101658

    Article  PubMed  PubMed Central  Google Scholar 

  16. Da J, Xu M, Wang Y, Li W, Lu M, Wang Z (2019) Kaempferol promotes apoptosis while inhibiting cell proliferation via androgen- dependent pathway and suppressing vasculogenic mimicry and invasion in prostate cancer. Anal Cell Pathol 2019:1907698. https://doi.org/10.1155/2019/1907698

    Article  CAS  Google Scholar 

  17. Mamouni K, Zhang S, Li X, Chen Y, Yang Y, Kim J et al (2018) A novel flavonoid composition targets androgen receptor signaling and inhibits prostate cancer growth in preclinical models. Neoplasia 20(8):789–799. https://doi.org/10.1016/j.neo.2018.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, Mclellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoffmann M, Kleine-Weber H, Krüger N, Mueller MA, Drosten C, Pöhlmann S (2020) The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv

    Google Scholar 

  21. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caruana G, Croxatto A, Coste AT, Opota O, Lamoth F, Jaton K, Greub G (2020) Diagnostic strategies for SARS-CoV-2 infection and interpretation of microbiological results. Clin Microbiol Infect 26:1178–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramesh K, Suman N, Samander K, Sanjay M (2020) COVID-19 diagnostic approaches: different roads to the same destination. Virus Dis 31(2):97–105. https://doi.org/10.1007/s13337-020-00599-7

    Article  Google Scholar 

  24. Roujian L, Xiang Z, Juan L, Peihua N, Bo Y, Honglong W, Wenling W, Hao S, Baoying H, Na Z, Yuhai B, Xuejun M, Faxian Z, Liang W, Tao H, Hong Z, Zhenhong H, Weimin Z, Li Z, Jing C, Yao M, Ji W, Yang L, Jianying Y, Zhihao X, Jinmin M, William JL, Dayan W, Wenbo X, Edward CH, George FG, Guizhen W, Weijun C, Weifeng S, Wenjie T (2020) Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574. https://doi.org/10.1016/S0140-6736

    Article  Google Scholar 

  25. Ahmad S, Hafeez A, Siddqui SA, Ahmad M, Mishra S (2020) A review of COVID-19 (coronavirus disease-2019) diagnosis, treatments and prevention. EJMO 4(2):116–125. https://doi.org/10.14744/ejmo.2020.90853

    Article  Google Scholar 

  26. Ali AA, Al-Shawi, Mustafa FH (2020) Perspective study of exploring some medicinal plants to manage the pandemic COVID-19. European J Med Health Sci 2(4):1–5. https://doi.org/10.24018/ejmed.2020.2.4.374

    Article  Google Scholar 

  27. Ali AR, Shamsah HA, Ranjit S, Ruchi T, Mohd IY, Shailesh KP, Mamta P, Yashpal SM, Kuldeep D, Katterine DB, Shafiul H, Alfonso JR (2020) SARS-CoV-2/COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic virus – a review. Front Immunol 2:1–46. https://doi.org/10.20944/preprints202004.0075.v1

    Article  Google Scholar 

  28. Beatriz AO, Lea C, Ester CS, Thelma SO (2020) SARS-CoV-2 and the COVID-19 disease: a mini review on diagnostic methods. Rev Inst Med Trop São Paulo 62:1–8

    Google Scholar 

  29. Arghavan A, Mohsen N, Hamidreza S, Ehsan S, Negin P (2020) The novel insight of SARS-CoV-2 molecular biology and pathogenesis and therapeutic options. DNA Cell Biol 39(10):1–13. https://doi.org/10.1089/dna.2020.5703

    Article  CAS  Google Scholar 

  30. Ho AS, Dinh TTH, Nghiem DT, Le TBQ, Luong THT, Vu TN, Le BQ, Trinh TH, Nguyen TS, Nguyen TL, Le VN, Nguyen VB, Tran VT, Do Q, Hoang VL, Hoang XS (2020) A simple method for detection of a novel coronavirus (SARS-CoV-2) using one-step RT-PCR followed by restriction fragment length polymorphism. J Med Virol 92(11):2839–2846. https://doi.org/10.1002/jmv.26171

    Article  CAS  Google Scholar 

  31. Rekha J, Amit KY, Damini V, Nishu D, Minakshi S, Rajeev S, Anil K, Pratima RS (2020) Strategies and perspectives to develop SARS-CoV-2 detection methods and diagnostics. Biomed Pharmacother 129:110446

    Article  CAS  Google Scholar 

  32. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brünink S, Schneider J, Schmidt ML, Mulders DG, Haagmans BL, van der VB, Brink S, Wijsman L, Goderski G, Romette JL, Ellis J, Zambon M, Peiris M, Goossens H, Reusken C, Koopmans MP, Drosten C (2020) Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eur Secur 25:2000045. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045

    Article  Google Scholar 

  33. Nature (2020) Will antibody tests for the coronavirus really change everything? https://media.nature.com/original/magazine-assets/d41586-020-01115-z/d41586-020-01115-z.pdf

  34. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W (2020) Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574. https://doi.org/10.1016/S0140-6736(20)30251-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y, Ng DYM, Wan CKC, Yang P, Wang Q, Peiris M, Poon LLM (2020) Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem 66:549–555. https://doi.org/10.1093/clinchem/hvaa029

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang Z, Zhou Y, Zhang Y, Guo Y, Tao S, Li Z, Zhang Q, Cheng J (2005) Sensitive detection of SARS coronavirus RNA by a novel asymmetric multiplex nested RTPCR amplification coupled with oligonucleotide microarray hybridization. In: Joos TO, Fortina P (eds) Microarrays in clinical diagnostics. Humana Press, Totowa, pp 59–78

    Chapter  Google Scholar 

  37. Singh R, Hong S, Jang J (2017) Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immunosensor integrated with a microfluidic platform. Sci Rep 7:42771. https://doi.org/10.1038/srep42771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang DH, Wu K, Zhang X et al (2020) In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med 18:152–158. https://doi.org/10.1016/j.joim.2020.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sujoy P, Alakesh M (2020) Traditional indian medicinal plants in the treatment of patients infected with human coronavirus 2019 (SARS-CoV- 2): a review. IOSR J Pharm Biol Sci 15(2):46–56

    Google Scholar 

  40. Paulin MK, Jimmy KK, Micheline K, Françoise VB, Paul MT, Antoine SK, Eric D, Adam Z, Simon T, Fatima S, Leon T, Jean-Jacques MT, Alimuddin Z, Jean BN (2020) Artemisia spp. derivatives for COVID-19 treatment: anecdotal use, political hype, treatment potential, challenges, and road map to randomized clinical trials. Am J Trop Med Hyg 103(3):960–964. https://doi.org/10.4269/ajtmh.20-0820

    Article  Google Scholar 

  41. Srivastava AK, Chaurasia JP, Khan R, Dhand C, Verma S (2020) Role of medicinal plants of traditional use in recuperating devastating COVID-19 situation. Med Aromat Plants (Los Angeles) 9:359. https://doi.org/10.35248/2167-0412.20.9.359

    Article  Google Scholar 

  42. Mohamed NB, William NS (2020) Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: future perspectives. Plan Theory 9:800. https://doi.org/10.3390/plants9060800.1-23

    Article  Google Scholar 

  43. Ilkay EO, Sezer SFD (2020) Natural products as potential leads against coronaviruses: could they be encouraging structural models against SARS-CoV-2? Nat Prod Bioprospect 10:171–186. https://doi.org/10.1007/s13659-020-00250-4

    Article  CAS  Google Scholar 

  44. Amir M, Mehrdad H, Farhad SD, Reza R, Hassan N (2020) A narrative literature review on traditional medicine options for treatment of corona virus disease 2019 (COVID-19). Complement Ther Clin Pract 40:101214. https://doi.org/10.1016/j.ctcp.2020.101214

    Article  Google Scholar 

  45. Johnson OO, Ebenezer IA, Oyedotun MO, Oluwaseun TO, Boyede DO, Boluwaji MA, Oyewole OI, Adenike TO (2020) A systematic review on COVID-19 pandemic with special emphasis on curative potentials of Nigeria based medicinal plants. Heliyon 6(2020):e04897

    Google Scholar 

  46. Yuxi L, Xiaobo L, Liuxue G, Juan L, Dongling Z, Yonggang Z, Mike C, Rongjiang J (2020) Traditional Chinese herbal medicine for treating novel coronavirus (COVID-19) pneumonia: protocol for a systematic review and meta-analysis. Syst Rev 9:75. https://doi.org/10.1186/s13643-020-01343-4

    Article  Google Scholar 

  47. Nadeem MK (2020) In-silico study to elucidate corona virus by plant phytoderivatives that hits as a fusion inhibitor targeting HR1 domain in spike protein which conformational changes efficiently inhibit entry COVID-19. Transl Biomed 11(3):1

    Google Scholar 

  48. Mohammadi N, Shaghaghi N (2020) Inhibitory effect of eight secondary metabolites from conventional medicinal plants on COVID_19 virus protease by molecular docking analysis. https://doi.org/10.26434/chemrxiv.11987475.v1.

  49. Kwong PC, Lin YC, Chen CJ (2020) A strategy of traditional Chinese medicine against COVID-19: linking current basic research and ancient medicine texts. Int J Complement Alt Med 13(2):79–81. https://doi.org/10.15406/ijcam.2020.13.00497

    Article  Google Scholar 

  50. Shi-you L, Cong C, Hai-qing Z, Hai-yan G, Hui W, Lin W, Xiang Z, Shi-neng H, Jun Y, Pei-gen X, Rong-song L, Xuehai T (2005) Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 67:18–23. https://doi.org/10.1016/j.antiviral.2005.02.007

    Article  CAS  Google Scholar 

  51. Erdan L, Daiyan Z, Hua L, Bowen L, Keming Z, Yonghua Z, Ying B, Yitao W (2020) Treatment efficacy analysis of traditional Chinese medicine for novel coronavirus pneumonia (COVID-19): an empirical study from Wuhan, Hubei Province, China. Chinas Med 15:34. https://doi.org/10.1186/s13020-020-00317-x

    Article  CAS  Google Scholar 

  52. Ikpa CBC, Maduka TOD, Christian EE, Ikezu UJM (2020) Potential plants for treatment and management of COVID-19 in Nigeria. Acad J Chem 5(6):69–80. https://doi.org/10.32861/ajc.56.69.80

    Article  CAS  Google Scholar 

  53. Tanya D, Ayush S (2020) Use of herbal medicines on coronavirus. Acta Sci Pharmaceut Sci 4(4):61–63

    Google Scholar 

  54. Sagar V, Kumar AHS (2020) Efficacy of natural compounds from Tinospora cordifolia against SARS-CoV-2 protease, surface glycoprotein and RNA polymerase. BEMS Rep 6(1):6–8

    Article  Google Scholar 

  55. Laksmiani NPL, Larasanty LPF, Santika AAGJ, Prayoga PAA, Dewi AAIK, Dewi NPAK (2020) Active compounds activity from the medicinal plants against SARS-CoV-2 using in silico assay. Biomed Pharmacol J 13(2):873

    Article  CAS  Google Scholar 

  56. Eman S, Ahmed AN, Reham SI (2020) Potential role of medicinal plants and their constituents in the mitigation of SARS-CoV-2: identifying related therapeutic targets using network pharmacology and molecular docking analyses. RSC Adv 10:27961–27983. https://doi.org/10.1039/d0ra05126h

    Article  CAS  Google Scholar 

  57. Mani D, Sekar V, Jingdi C, Baskaralingam V, Esteban FD (2020) South Indian medicinal plants can combat deadly viruses along with COVID-19?—a review. Microb Pathog 148:104277. https://doi.org/10.1016/j.micpath.2020.104277

    Article  CAS  Google Scholar 

  58. Mani JS, Johnson JB, Steel JC, Broszczak DA, Neilsen PM, Walsh KB, Naiker M (2020) Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Res 284:197989. https://doi.org/10.1016/j.virusres.2020.197989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huizhen C, Ziyan X, Yuxia Z, Qiu C, Chunguang X (2020) Chinese medicine for COVID-19 a protocol for systematic review and meta-analysis. Medicine 99:25. https://doi.org/10.1097/MD.0000000000020660

    Article  CAS  Google Scholar 

  60. Mohamad HS, Wenli S, Hong S, Qi C (2020) Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agricult Scand 70:5. https://doi.org/10.1080/09064710.2020.1763448

    Article  CAS  Google Scholar 

  61. Abidemi JA, Foluso OA, Margaret OS, Olufunsho A, Abimbola S, Omobolanle A, Moshood OA, Ismail OI, Ifeoma O, Olumuyiwa BS, Ibrahim AO, Olayinka TA, Olukemi O (2020) COVID-19 pandemic: a case for phytomedicines. Nat Prod Commun 15(8):1–9. https://doi.org/10.1177/1934578X20945086

    Article  Google Scholar 

  62. Prativa P, Angisha B, Aatish M (2020) Quest for COVID-19 cure: integrating traditional herbal medicines in the modern drug paradigm. Appl Sci Technol Ann 1(1):63–71. https://doi.org/10.3126/asta.v1i1.30275

    Article  Google Scholar 

  63. Joshi T, Joshi T, Sharma P, Mathpal S, Pundir H, Bhatt V, Chandra S (2020) In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur Rev Med Pharmacol Sci 24:4529–4536

    CAS  PubMed  Google Scholar 

  64. Balachandar V, Mahalaxmi I, Kaavya J, Vivekanandhan G, Ajithkumar S, Arul N, Singaravelu G, Senthil KN, Mohana DS (2020) COVID-19: emerging protective measures. Eur Rev Med Pharmacol Sci 24:3422–3425

    CAS  PubMed  Google Scholar 

  65. Kabidul A, Md N, Rahat AM, Anamul H, Rownak J, Mohammed R (2020) Some home remedies used for treatment of COVID-19 in Bangladesh. J Med Plants Stud 8(4):27–32

    Google Scholar 

  66. Christian EE et al (2020) Potential plants for treatment and management of COVID-19 in Nigeria. Intl J Med Plant Nat Prod 6(3):1–12. https://doi.org/10.20431/2454-7999.0603001

    Article  Google Scholar 

  67. Ambrish KS, Abhishek K, Neeraj M (2020) On the inhibition of COVID-19 protease by Indian herbal plants: an in silico investigation. https://arxiv.org/ftp/arxiv/papers/2004/2004.03411.pdf

  68. Thuy BTP, My TTA, Hai NTT, Hieu LT, Hoa TT, Thi PLH, Triet NT, Anh TTV, Quy PT, Tat PV (2020) Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega 5:8312–8320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sydiskis R, Owen D, Lohr J, Rosler K, Blomster R (1991) Inactivation of enveloped viruses by anthraquinones extracted from plants. Antimicrob Agents Chemother 35:2463–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ulasli M, Gurses SA, Bayraktar R, Yumrutas O, Oztuzcu S, Igci M, Igci YZ, Cakmak EA, Arslan A (2014) The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol Biol Rep 41:1703–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Khor PY, Aluwi MFFM, Rullah K, Lam KW (2019) Insights on the synthesis of asymmetric curcumin derivatives and their biological activities. Eur J Med Chem 183:111704

    Article  CAS  PubMed  Google Scholar 

  72. Patel A, Rajendran M, Pakala SB, Shah A, Patel H, Karyala P (2020) Virtual screening of curcumin and its analogs against the spike surface glycoprotein of SARS-CoV-2 and SARS-CoV. J Biomol Struct Dyn 5:1–9

    CAS  Google Scholar 

  73. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H (2003) Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361:2045–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bouchentouf S, Missoum N (2020) Identification of compounds from nigella sativa as new potential inhibitors of 2019 novel coronavirus (Covid-19): molecular docking study. RSC Adv 10:27961

    Google Scholar 

  75. Islam MN, Hossain KS, Sarker PP, Ferdous J, Hannan MA, Rahman MM, Chu DT, Uddin MJ (2020) Revisiting pharmacological potentials of Nigella sativa seed: a promising option for COVID-19 prevention and cure. Phytother Res

    Google Scholar 

  76. Islam MT, Sarkar C, El-Kersh DM, Jamaddar S, Uddin SJ, Shilpi JA, Mubarak MS (2020) Natural products and their derivatives against coronavirus: a review of the non-clinical and pre-clinical data. Phytother Res 34:2471–2492. https://doi.org/10.1002/ptr.6700

    Article  CAS  PubMed  Google Scholar 

  77. Erhirhie E, Ekene NE, Ajaghaku D (2014) Guidelines on dosage calculation and stock solution preparation in experimental animals’ studies. J Nat Sci Res 4:100–106

    Google Scholar 

  78. Najjaa H, Neffati M, Zouari S, Ammar E (2007) Essential oil composition and antibacterial activity of different extracts of Allium roseum L., a north African endemic species. C R Chim 10:820–826

    Article  CAS  Google Scholar 

  79. Singh VK, Singh DK (2008) Pharmacological effects of garlic (Allium sativum L.). Ann Rev Biomed Sci 10:6–26

    CAS  Google Scholar 

  80. Josling P (2005) The heart of garlic Nature's aid to healing the human body. HEC Publishing, Chicago

    Google Scholar 

  81. Lawson LD (1998) Garlic: a review of its medicinal effects and indicated active compounds. ACS Publications, New York

    Google Scholar 

  82. Lau BH, Lam F, Wang-Cheng R (1987) Effect of an odor-modified garlic preparation on blood lipids. Nutr Res 7:139–149

    Article  CAS  Google Scholar 

  83. Laghari AQ, Memon S, Nelofar A, Laghari AH (2011) Extraction, identification and antioxidative properties of the flavonoid-rich fractions from leaves and flowers of Cassia angustifolia. Am J Anal Chem 2:871

    Article  CAS  Google Scholar 

  84. Prakashan N (2009) Pharmacognosy. Prakashan, Nirali

    Google Scholar 

  85. Ademosun AO, Oboh G (2014) Anticholinesterase and antioxidative properties of water-extractable phytochemicals from some citrus peels. J Basic Clin Physiol Pharmacol 25:199–204

    Article  CAS  PubMed  Google Scholar 

  86. Dhiman A, Nanda A, Ahmad S, Narasimhan B (2011) In vitro antimicrobial activity of methanolic leaf extract of Psidium guajava L. J Pharm Bioallied Sci 3:226

    Article  PubMed  PubMed Central  Google Scholar 

  87. Carvalho O, Botelho C, Ferreira C, Ferreira H, Santos M, Diaz M, Oliveira T, Soares-Martins J, Almeida M, Júnior AS (2013) In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: implications of structural differences for antiviral design. Res Vet Sci 95:717–724

    Article  CAS  PubMed  Google Scholar 

  88. Eigner D, Scholz D (1999) Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. J Ethnopharmacol 67:1–6

    Article  CAS  PubMed  Google Scholar 

  89. Araujo C, Leon L (2001) Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz 96:723–728

    Article  CAS  PubMed  Google Scholar 

  90. Ammon HP, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57:1–7

    Article  CAS  PubMed  Google Scholar 

  91. Armanini D, Fiore C, Mattarello M, Bielenberg J, Palermo M (2002) History of the endocrine effects of licorice. Exp Clin Endocrinol Diabetes 110:257–261

    Article  CAS  PubMed  Google Scholar 

  92. Fiore C, Eisenhut M, Ragazzi E, Zanchin G, Armanini D (2005) A history of the therapeutic use of liquorice in Europe. J Ethnopharmacol 99:317–324

    Article  PubMed  PubMed Central  Google Scholar 

  93. Barnes J, Anderson L, Phillipson J (2002) Herbal medicines 2002. Pharmaceutical Press, Royal Pharmaceutical Society, London

    Google Scholar 

  94. Blumenthal M, Goldberg A, Brinckmann J (2000) Herbal medicine: Expanded Commission e-monographs. Integrative Medicine Communications, New York

    Google Scholar 

  95. Chen F, Chan K, Jiang Y, Kao R, Lu H, Fan K, Cheng V, Tsui W, Hung I, Lee T (2004) In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol 31:69–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Fujii T, Nakamura T, Iwamoto A (2004) Current concepts in SARS treatment. J Infect Chemother 10:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  97. Enomoto S, Asano R, Iwahori Y, Narui T, Okada Y, Singab ANB, Okuyama T (2001) Hematological studies on black cumin oil from the seeds of Nigella sativa L. Biol Pharm Bull 24:307–310

    Article  CAS  PubMed  Google Scholar 

  98. Forouzanfar F, Bazzaz BSF, Hosseinzadeh H (2014) Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci 17:929

    PubMed  PubMed Central  Google Scholar 

  99. Salem ML, Hossain MS (2000) Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int J Immunopharmacol 22:729–740

    Article  CAS  PubMed  Google Scholar 

  100. Gilani A, Aziz N, Khurram I, Chaudhary K, Iqbal A (2001) Bronchodilator, spasmolytic and calcium antagonist activities of Nigella sativa seeds (Kalonji): a traditional herbal product with multiple medicinal uses. J Pak Med Assoc 51:115

    CAS  PubMed  Google Scholar 

  101. Namazi N, Mahdavi R, Alizadeh M, Farajnia S (2015) Oxidative stress responses to Nigella sativa oil concurrent with a low-calorie diet in obese women: a randomized, double-blind controlled clinical trial. Phytother Res 29:1722–1728

    Article  CAS  PubMed  Google Scholar 

  102. Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, Lee CK, Chang ST, Kuo CJ, Lee SS (2007) Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 50:4087–4095

    Article  CAS  PubMed  Google Scholar 

  103. Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov GA, Doerr HW, Cinatl J (2005) Antiviral activity of glycyrrhizic acid derivatives against SARS− coronavirus. J Med Chem 48:1256–1259

    Article  CAS  PubMed  Google Scholar 

  104. Chandel V, Raj S, Rathi B, Kumar D (2020) In silico identification of potent COVID-19 main protease inhibitors from FDA approved antiviral compounds and active phytochemicals through molecular docking: a drug repurposing approach. Chem Biol Lett 7:3. https://doi.org/10.20944/preprints202003.0349

    Article  Google Scholar 

  105. da Silva Antonio A, Wiedemann LSM, Veiga-Junior VF (2020) Natural products’ role against COVID-19. RSC Adv 10:23379

    Article  Google Scholar 

  106. Renjith RD, Sankar M (2020) Scope of phytochemicals in the management of COVID-19. Pharm Res 3(1):26–29

    CAS  Google Scholar 

  107. Alisha K, Tripti S (2020) ChemRxiv. https://doi.org/10.26434/chemrxiv.12320273.v1

  108. Chojnacka K, Witek-Krowiak A, Skrzypczak D, .Mikula K, MÅ‚ynarz P. 2020 Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J Funct Foods 73, 104146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wan S, Xiang Y, Fang W, Zheng Y, Li B, Hu Y, Lang C, Huang D, Sun Q, Xiong Y, Huang X, Lv J, Luo Y, Shen L, Yang H, Huang G, Yang R (2020) Clinical features and treatment of COVID-19 patients in Northeast Chongqing. J Med Virol 92:797. https://doi.org/10.1002/jmv.25783

    Article  CAS  PubMed  Google Scholar 

  110. Ling CQ (2020) Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2). J Integr Med 18(2):87–88

    Article  PubMed  PubMed Central  Google Scholar 

  111. Jo S, Kim S, Shin DH, Kim MS (2020) J Enzyme Inhib Med Chem 35:145–151

    Article  CAS  PubMed  Google Scholar 

  112. Lung J, Lin YS, Yang YH, Chou YL, Shu LH, Cheng YC, Liu HT, Wu CY (2020) The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol 92(6):693–697

    Article  CAS  PubMed  Google Scholar 

  113. Nguyen TTH, Woo HJ, Kang HK, Nguyen VD, Kim YM, Kim DW, Kim D (2012) Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett 34(5):831–838. https://doi.org/10.1007/s10529-011-0845-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wen CC, Shyur LF, Jan JT, Liang PH, Kuo CJ, Arulselvan P, Yang NS (2011) Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. J Tradit Complement Med 1(1):41–50. https://doi.org/10.1016/S2225-4110(16)30055-4

    Article  PubMed  PubMed Central  Google Scholar 

  115. Chiow KH, Phoon MC, Benny TP, Tan KH, Chow VT (2016) Evaluation of antiviral activities of Houttuynia cordata Thunb. Extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac J Trop Med 9(1):1–7

    Article  CAS  PubMed  Google Scholar 

  116. Lin L-T, Hsu W-C, Lin C-C (2014) Antiviral natural products and herbal medicines. J Tradit Complement Med 4(1):24–35

    Article  PubMed  PubMed Central  Google Scholar 

  117. Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JI-P, Gutierrez RA, Gwee SXW, Chua PEY, Yang Q (2020) Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-ncoV): a systematic review. J Clin Med 9(3):623

    Article  CAS  PubMed Central  Google Scholar 

  118. Luo H, Tang Q-l, Shang Y-x, Liang S-b, Yang M, Robinson N, Liu J-p (2020) Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med 26(4):243–250

    Article  CAS  PubMed  Google Scholar 

  119. Idrees M, Khan S, Memon NH, Zhang Z (2020) Effect of the phytochemical agents against the SARS-CoV and selected some of them for application to COVID-19: a mini-review. Curr Pharm Biotechnol. https://doi.org/10.2174/1389201021666200703201458

  120. Cheng C, Jia X, Xiao C et al (2019) Paulownia C-geranylated flavonoids: their structure variety, biological activity and application prospects. Phytochem Rev 18:549–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Orhan IE, Senol-Deniz FS (2020) Natural products as potential leads against coronaviruses: could they be encouraging structural models against SARS-CoV-2? Prod Bioprospect 10:171–2020

    Article  CAS  Google Scholar 

  122. Boukhatem MN, Setzer WN (2020) Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: future perspectives. Plan Theory 9:800. https://doi.org/10.3390/plants9060800

    Article  CAS  Google Scholar 

  123. Chowdhury MA, Shuvho MBA, Shahid MA, Haque AKMM, Kashem MA, Lam SS, Ong HC, Uddin MA, Mofijur M (2020) Prospect of biobased antiviral face mask to limit the coronavirus outbreak. Environ Res 192:110294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Gautreta P, Lagiera J-C, Parola P et al (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. J Antimicrob Agents 56:105949. https://doi.org/10.1016/j.ijantimicag.2020.105949

    Article  CAS  Google Scholar 

  125. Leonova GN, Shutikova AL, Lubova VA et al (2020) Inhibitory activity of Scutellaria baicalensis flavonoids against tick-borne encephalitis virus. Bull Exp Biol Med 168:665–668. https://doi.org/10.1007/s10517-020-04776-y

    Article  CAS  PubMed  Google Scholar 

  126. Barton C, Kouokam JC, Hurst H, Palmer KE (2016) Pharmacokinetics of the antiviral lectin griffithsin administered by different routes indicates multiple potential uses. Viruses 8(12):331. https://doi.org/10.3390/v8120331

    Article  CAS  PubMed Central  Google Scholar 

  127. Vogel S, Ohmayer S, Brunner G, Heilmann J (2008) Natural and non-natural prenylated chalcones: synthesis, cytotoxicity and anti-oxidative activity. Bioorg Med Chem 16(8):4286–4293

    Article  CAS  PubMed  Google Scholar 

  128. Diniz LRL, Filho CDB, Fielding BC, de Sousa DP (2020) Natural antioxidants: a review of studies on human and animal coronavirus. Oxid Med Cell Longev 2020:3173281. https://doi.org/10.1155/2020/3173281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zomborszki ZP, Csupor NKD, Peschel W (2019) Rhodiosin and herbacetin in Rhodiola rosea preparations: additional markers for quality control? Pharm Biol 57(1):295–305

    Article  CAS  Google Scholar 

  130. Gan L, Ma J, You G et al (2020) Glucuronidation and its effect on the bioactivity of amentoflavone, a biflavonoid from Ginkgo biloba leaves. J Pharm Pharmacol 49:5602

    Google Scholar 

  131. Pan LX, Yi R, Zhao X (2018) Polyphenols in Liubao tea can prevent CCl4-induced hepatic damage in mice through its antioxidant capacities. Nutrients 10(9):1280

    Article  PubMed Central  CAS  Google Scholar 

  132. Zahoor M, Shah AB, Naz S, Ullah R, Bari A, Mahmood HM (2020) Isolation of quercetin from Rubus fruticosus, their concentration through NF/RO membranes, and recovery through carbon nanocomposite. A pilot plant study. Biomed Res Int 2020:7

    Article  CAS  Google Scholar 

  133. Goud NS, Prasad G (2020) Antioxidant, antimicrobial activity and total phenol and flavonoids analysis of Sambucus nigra (elderberry). Int J Curr Pharm Res 12(1):35–37

    Article  CAS  Google Scholar 

  134. Shen B, Yang Y, Yasamin S, Liang N, Su W, Chen S, Wang X, Wang W (2019) Analysis of the phytochemistry and bioactive of the genes polygonum of polygonaceae. Digital Chin Med 1(1):19–36

    Article  Google Scholar 

  135. Zahoor I, Shafi A, Fazili KM, Haq E (2019) Bioinformatics and medicinal plant research: current scenario. In: Hakeem K, Shaik N, Banaganapalli B, Elango R (eds) Essentials of bioinformatics. Springer, Cham. https://doi.org/10.1007/978-3-030-19318-8_8

    Chapter  Google Scholar 

  136. Yi F, Li L, Xu L, Meng H, Dong Y, Liu H, Xiao P (2018) In silico approach in reveal traditional medicine plants pharmacological material basis. Chinas Med 13:33. https://doi.org/10.1186/s13020-018-0190-0

    Article  CAS  Google Scholar 

  137. Fitzgerald M, Heinrich M, Booker A (2020) Medicinal plant analysis: a historical and regional discussion of emergent complex techniques. Front Pharmacol 10:1480. https://doi.org/10.3389/fphar.201.9.01480

    Article  PubMed  PubMed Central  Google Scholar 

  138. Harishchander AA (2017) A review on application of bioinformatics in medicinal plants research. Bioinform Proteome Opn Acc J 1(1):000104

    Google Scholar 

  139. Babar MM, Zaidi NS, Pothineni VR, Ali Z, Faisai S, Hakeem KR, Gul A (2017) Application of bioinformatics and system biology in medicinal plants studies. In: Plant Bioinformatics. Springer, New York, pp 376–389. https://doi.org/10.1007/978-3-319-67156-7_15.

    Chapter  Google Scholar 

  140. Romano JD, Tatonetti NP (2019) Informatics and computational methods in natural product drug discovery: a review and perspectives. Front Genet 10:368. https://doi.org/10.3389/fgene.2019.00368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, Leipe D, Mcviegh R, O’Neill K, Robbertse B, Sharma S, Soussov V, Sullivan JP, Sun L, Turner S, Karsch-Mizrachi I (2020) NCBI taxonomy: a comprehensive update on curation, resources and tools. Database 2020:baaa062. https://doi.org/10.1093/database/baaa062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kanehisa M (2016) KEGG bioinformatics resource for plant genomic. Methods Mol Biol 1374:55–70

    Article  CAS  PubMed  Google Scholar 

  143. Skoczen S, Bussmann RW (2006) ebDB—filling the gap for an international ethnobotany database. Iyonia a J Ecol Appl 11(2):71–81

    Google Scholar 

  144. Graham J, Farnsworth NR (2010) The NAPALERT database as an aid for discovery of novel bioactive compounds. In: Comprehensive natural products II. Elsevier, Boston, pp 81–94

    Chapter  Google Scholar 

  145. Huang L, Xie D, Yu Y, Liu H, Shi T, Wen C (2018) TCMID 2.0: a comprehensive resource for TCM. Nuclei Acids Res 46:D1117–D1120. https://doi.org/10.1093/nar/gkx1028

    Article  CAS  Google Scholar 

  146. Abubakar AR, Haque M (2019) Medicinal plants with reported anxiolytic and sedative activities in Nigeria: a systematic review. J Faculty Pharm Istanbul Univ 49(2):92

    Article  Google Scholar 

  147. Yu D, Lu J, Shao W, Ma X, Xie T, Ito H, Wang T, Xu M, Wang H, Meng Y (2019) MepmiRDB: a medicinal plant microRNA database. Database 2019:baz070. https://doi.org/10.1093/database/baz070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fei Y, shaojun X, Yuwei L, Xin Q, Jingiuan Y (2013) Genome wide characterization of microRNA in foxtail millet (setaria italica). BMC Plant Biol 13:212

    Article  CAS  Google Scholar 

  149. Spannagl M, Noubibou O, Haase D, Yang L, Gundlach H, Hindemitt T, Klee K, Haberer G, Schoof H, Mayer KF (2007) MIPSPlantsDB—plant database resource for integrative and comparative plant genome research. Nucleic Acids Res 35:834–840

    Article  Google Scholar 

  150. Shafi A, Zahoor I, Haq E, fazili KM (2019) Impact of bioinformatics on plant science research and crop improvement. Essential Bioinf 3:29–46

    Google Scholar 

  151. Dash S, Hemert JV, Horg L, Wise RP, Dickerson JA (2012) PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res 40:D1194–D1201. https://doi.org/10.1093/nar/gkr938

    Article  CAS  PubMed  Google Scholar 

  152. Pathania S, Ramakrishnan SM, Bagler G (2015) Phytochemical: a platform to explore phytochemicals of medicinal plants. Database 2015:bav075. https://doi.org/10.1093/database/bav075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kumar A, Kumar R, Sharma M, Kumar U, Gajula MNV, Singh KP (2018) Uttarakhand medicinal plants database (UMPDB): a platform for exploring genomic, chemical, and traditional knowledge. Data 3:1. https://doi.org/10.3390/data3010007

    Article  Google Scholar 

  154. Mohanraj K, Karthikeyan BS, Vivek-Ananth RP, Chand B, Aparna SR, Mangalapandi P, Samal A (2018) IMPPAT: a curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci Rep 8:4329. https://doi.org/10.1038/s41598-22631-z.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Gu J, Gui Y, Chen L, Yuan G, Xu X (2013) CVDHD: a cardiovascular disease herbal database for drug discovery and network pharmacology. J Chem 5(1):51

    CAS  Google Scholar 

  156. Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ui-Amin M, Darusman LK, Saito K, Kanaya S (2012) KNApSAcK family databases: integrate metabolites-plant species databases for multifaceted plant research. Plant Cell Physiol 53(2):1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Oluwaseun Adetunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adetunji, C.O. et al. (2021). Targeting SARS-CoV-2 Novel Corona (COVID-19) Virus Infection Using Medicinal Plants. In: Dua, K., Nammi, S., Chang, D., Chellappan, D.K., Gupta, G., Collet, T. (eds) Medicinal Plants for Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6850-7_21

Download citation

Publish with us

Policies and ethics