Skip to main content

Exploring the Potential of Medicinal Plants in Lung Cancer

  • Chapter
  • First Online:
Medicinal Plants for Lung Diseases
  • 753 Accesses

Abstract

Lung carcinoma is the main cause of death among individuals, accounting for almost 25% of all deaths from cancer. A significant number of individual’s perish due to lung cancer per year as compared to the colon, prostate, and breast cancer problem. Smoking and the use of tobacco products have been found to be responsible for nearly 90% of lung cancer cases. However, other factors may lead to lung carcinogenesis, such as air pollution exposures, asbestos, radon gas, and other chronic infections. The most used techniques for the treatment of lung carcinoma are chemotherapy, radiotherapy, and surgery. Standard chemotherapies, however, present severe patient toxicity, side effects and can result in minimal survival benefits. There are many medicinal plants having potential against lung cancer with minimal or no side effects, and, therefore, can be explored scientifically. These plant-derived phytochemicals and antitumor herbs have attracted the investigators/scientists due to their least or no harmful effects to the patient under treatment, as in case of chemotherapy. Studies have reported the covering of different approaches for treatment of lung cancer, however, a cumulative study comprising of the alternative options with natural compounds for lung cancer treatment is in the initial stages and the natural lead molecules responsible for the treatment using herbal medicinal plants are still very scarce. In the present chapter, epidemiology of lung cancer, lung cancer types, its underlying causes, and herbal medicines along with their lead compounds for the treatment of lung carcinoma have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAC:

Bronchioloalveolar carcinoma

DDP:

Diamminedichloroplatinum

EGFR:

Endothelial growth factor receptor

HIF:

Hypoxia inducing factor

LCNEC:

Large cell neuroendocrine carcinoma

nAChR:

Nicotinicacetylcholine receptor

NSCLC:

Non-small cell lung cancer

PARP:

Poly-ADP ribose polymerase

SCLC:

Small cell lung cancer

SM:

Solamargine

SNP:

Single nucleotide polymorphism

TNF:

Tumor necrosis factor

References

  1. Merck (2020) Lung carcinoma: tumors of the lungs. http://www.merck.com/mmpe/sec05/ch062/ch062b.html#sec05-ch062-ch062b-1405. Accessed 19 Oct 2020

  2. Siegel R, Ward E, Brawley O et al (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61(4):212–236

    Article  PubMed  Google Scholar 

  3. Wang Y, Zhao H, Gao X et al (2016) Identification of a three-miRNA signature as a blood-borne diagnostic marker for early diagnosis of lung adenocarcinoma. Oncotarget 7(18):26070–26086. https://doi.org/10.18632/oncotarget.8429

    Article  PubMed  PubMed Central  Google Scholar 

  4. Howlader N, Noone AM, Krapcho M et al (2010) SEER cancer statistics review, 1975–2008. National Cancer Institute, Bethesda, MD

    Google Scholar 

  5. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  6. Bunn PA (2012) Worldwide overview of the current status of lung cancer diagnosis and treatment. Arch Pathol Lab Med 136:1478–1481

    Article  PubMed  Google Scholar 

  7. Amos CI, Xu W, Spitz MR et al (1999) Is there a genetic basis for lung cancer susceptibility. Chemoprevention Cancer 151:3–12

    Article  CAS  Google Scholar 

  8. Lam WK, White NW, Chan-Yeung MM et al (2004) Lung cancer epidemiology and risk factors in Asia and Africa. Int J Tuberc Lung Dis 8:1045–1057

    CAS  PubMed  Google Scholar 

  9. NCI (2015) Non-small cell lung cancer treatment–patient version (PDQ®). http://www.cancer.gov/types/lung/patient/non-small-cell-lung-treatment-pdq. Accessed 12 May 2015

  10. World Cancer Report (2014) World Health Organization

    Google Scholar 

  11. Alberg AJ, Ford JG, Samet JM et al (2007) Epidemiology of lung cancer: ACCP evidence-based clinical practice guidelines. Chest 132(3):29S–55S

    Article  CAS  PubMed  Google Scholar 

  12. De GP, Munden RF (2012) Lung cancer epidemiology, risk factors, and prevention. Radiol Clin N Am 50(5):863–876. https://doi.org/10.1016/j.rcl.2012.06.006

    Article  Google Scholar 

  13. Bjerager M, Palshof T, Dahl R et al (2006) Delay in diagnosis of lung cancer in general practice. Br J Gen Prac 56(532):863–868

    Google Scholar 

  14. Polanski J, Jankowska PB, Rosinczuk J et al (2016) Quality of life of patients with lung cancer. Onco Targets Ther 9:1023–1028. https://doi.org/10.2147/OTT.S100685

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bilello KS, Murin S, Matthay RA et al (2002) Epidemiology, etiology and prevention of lung cancer. Clin Chest Med 23(1):1–25

    Article  PubMed  Google Scholar 

  16. Siegel RL, Fedewa SA, Miller KD et al (2015) Cancer statistics for Hispanics/Latinos, 2015. CA Cancer J Clin 65:457–480

    Article  PubMed  Google Scholar 

  17. Bade BC, Cruz CS (2020) Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med 41(1):1–24

    Article  PubMed  Google Scholar 

  18. Brambilla E, Gazdar A (2009) Pathogenesis of lung cancer signaling pathways: Roadmap for therapies. Eur Respir J 33:1485–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dela Cruz CS, Tanoue LT, Matthay RA et al (2011) Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med 32(4):605–644. https://doi.org/10.1016/j.ccm.2011.09.001

    Article  Google Scholar 

  20. Walters S, Maringe C, Coleman MP et al (2013) Lung cancer survival and stage at diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: a population-based study, 2004-2007. Thorax 68(6):551–564

    Article  PubMed  Google Scholar 

  21. Alberg AJ, Brock MV, Samet JM et al (2005) Epidemiology of lung cancer: looking to the future. J Clin Oncol 23(14):3175–3185

    Article  PubMed  Google Scholar 

  22. Alberg AJ, Brock MV, Ford JG et al (2013) Epidemiology of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143(5):e1S–e29S. https://doi.org/10.1378/chest.12-2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thomas V, Jose B, Rennis D et al (2018) Prevalence of type and etiology of lung cancer among the patients presented to a tertiary care hospital at central Kerala: a descriptive study. Int J Res Med Sci 6:834

    Article  Google Scholar 

  24. Hildegard MS (2019) The impact of smoking and the influence of other factors on lung cancer. Expert Rev Respir Med 13(8):761–769. https://doi.org/10.1080/17476348.2019.1645010

    Article  CAS  Google Scholar 

  25. Molina JR, Yang P, Cassivi SD et al (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83(5):584–594. https://doi.org/10.4065/83.5.584

    Article  PubMed  Google Scholar 

  26. Chen Z, Fillmore CM, Hammerman PS et al (2014) Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14(8):535–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Travis WD, Rekhtman N (2011) Pathological diagnosis and classification of lung cancer in small biopsies and cytology: strategic management of tissue for molecular testing. Semin Respir Crit Care Med 32(1):22–31. https://doi.org/10.1055/s-0031-1272866

    Article  PubMed  Google Scholar 

  28. National Cancer Institute (2007) Surveillance, epidemiology and end results (SEER) Cancer statistics review 1975–2004. http://SEER.cancer.gov/CSR/1975_2004/results_merged/sect_15_lung_bronchus.pdf

  29. Bunn PA, Minna JD, Augustyn A et al (2016) Small cell lung cancer: can recent advances in biology and molecular biology be translated into improved outcomes. J Thorac Oncol 11(4):453–474

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brown KM, Keats JJ, Sekulic A et al (2010) Holland-Frei Cancer Medicine, 8th edn. People’s Medical Publishing House USA, Shelton, CT

    Google Scholar 

  31. Hecht SS (2012) Lung carcinogenesis by tobacco smoke. Int J Cancer 131(12):2724–2732. https://doi.org/10.1002/ijc.27816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parkin DM (2011) Tobacco-attributable cancer burden in the UK in 2010. Br J Cancer 105(2):6–13

    Article  Google Scholar 

  33. Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91:1194–1210

    Article  CAS  PubMed  Google Scholar 

  34. Vineis P, Alavanja M, Buffler P et al (2004) Tobacco and cancer: recent epidemiological evidence. J Natl Cancer Inst 96(2):99–106

    Article  CAS  PubMed  Google Scholar 

  35. Wynder EL, Hoffmann D (1994) Smoking and lung cancer: scientific challenges and opportunities. Cancer Res 54(20):5284–5295

    CAS  PubMed  Google Scholar 

  36. Harris JE, Thun MJ, Mondul AM et al (2004) Cigarette tar yields in relation to mortality from lung cancer in the cancer prevention study II prospective cohort, 1982–8. BMJ 328:1–8

    Article  Google Scholar 

  37. Bhalla DK, Hirata F, Rishi AK et al (2009) Cigarette smoke, inflammation, and lung injury: A mechanistic perspective. J Toxicol Environ Health 12:45–64

    Article  CAS  Google Scholar 

  38. Landi MT, Chatterjee N, Yu K et al (2009) A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet 85:679–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lissowska J, Foretova L, Dabek J et al (2010) Family history and lung cancer risk: international multicentre case-control study in Eastern and Central Europe and meta-analyses. Cancer Causes Control 21:1091–1104

    Article  PubMed  Google Scholar 

  40. Yang IA, Holloway JW, Fong KM et al (2013) Genetic susceptibility to lung cancer and comorbidities. J Thorac Dis 5:S454–S462

    PubMed  PubMed Central  Google Scholar 

  41. Benhamou S, Lee WJ, Alexandrie AK et al (2002) Meta-and pooled analyses of the effects of glutathione S-transferase M1 polymorphisms and smoking on lung cancer risk. Carcinogenesis 23(8):1343–1350

    Article  CAS  PubMed  Google Scholar 

  42. Alberg AJ, Wallace K, Silvestri GA et al (2013) Invited commentary: the etiology of lung cancer in men compared with women. Am J Epidemiol 177:613–616

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bain C, Feskanich D, Speizer FE et al (2004) Lung cancer rates in men and women with comparable histories of smoking. J Natl Cancer Inst 96:826–834

    Article  PubMed  Google Scholar 

  44. Arnold BN, Thomas DC, Rosen JE et al (2016) Lung cancer in the very young: treatment and survival in the national cancer data base. J Thorac Oncol 11:1121–1131

    Article  PubMed  Google Scholar 

  45. Dela Cruz CS, Tanoue TL, Matthany RA (2009) Lung cancer: epidemiology and carcinogenesis. In: Shields TW (ed) General thoracic surgery, 7th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, PA, pp 1281–1298

    Google Scholar 

  46. De MS, Consonni D, Bertazzi PA et al (2008) Exposure to occupational carcinogens and lung cancer risk. Evolution of epidemiological estimates of attributable fraction. Acta Biomed 79(1):34–42

    Google Scholar 

  47. EPA (Environmental Protection Agency) (2003) EPA assessment of risks from radon in homes. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  48. Schmid K, Kuwert T, Drexler H et al (2010) Radon in indoor spaces: an underestimated risk factor for lung cancer in environmental medicine. Dtsch Arztebl Int 107(11):181–186. https://doi.org/10.3238/arztebl.2010.0181

    Article  PubMed  PubMed Central  Google Scholar 

  49. O'Reilly KM, Mclaughlin AM, Beckett WS, Sime PJ (2007) Asbestos-related lung disease. Am Family Phys 75(5):683–688

    Google Scholar 

  50. Davies RJ, Lee YC (2010) “18.19.3”. Oxford Textbook Medicine, 5th edn. OUP, Oxford, UK

    Google Scholar 

  51. Cogliano VJ, Baan R, Straif K, Grosse Y, Lauby-Secretan B, El Ghissassi F et al (2011) Preventable exposures associated with human cancers. J Natl Cancer Inst 103(24):1827–1839

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jeong S, Koh W, Kim B et al (2011) Are there new therapeutic options for treating lung cancer based on herbal medicines and their metabolites. J Ethnopharmacol 138(3):652–661

    Article  CAS  PubMed  Google Scholar 

  53. Monteiro L, Bastos K, Filho J et al (2014) Medicinal plants and other living organism with antitumor potential against lung cancer. Evid Based complement Altern Med 2014:604152

    Article  Google Scholar 

  54. Siddiqui IA, Sanna V, Ahmad N et al (2015) Resveratrol nano formulation for cancer prevention and therapy. Ann N YAcad Sci 1348(1):20–31

    Article  CAS  Google Scholar 

  55. Brandes JC, Amin AR, Khuri F et al (2010) Prevention of lung cancer: future perspective with natural compounds. Tuberc Respir Dis 69:1–15

    Article  Google Scholar 

  56. Bucher FL, Bueno-de-Mesquita HB, Linseisen J et al (2010) Fruits and vegetables consumption and the risk of histological subtypes of lung cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Causes Control 21:357–371

    Article  Google Scholar 

  57. Baines KJ, Backer V, Gibson PG et al (2015) Investigating the effects of arctic dietary intake on lung health. Eur J Clin Nutr 69:1262–1266

    Article  CAS  PubMed  Google Scholar 

  58. Jin L, Li C, Xu Y et al (2013) Epigallocatechin gallate promotes p53 accumulation and activity via the inhibition of MDM2-mediated p53 ubiquitination in human lung cancer cells. Oncol Rep 29:1983–1990

    Article  CAS  PubMed  Google Scholar 

  59. Khan N, Adhami VM, Mukhtar H et al (2009) Review: Green Tea Polyphenols in Chemoprevention of Prostate Cancer: Preclinical and Clinical Studies. Nutr Cancer 61:836–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shapiro TA, Fahey JW, Wade KL et al (2001) Chemo protective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol Biomark Prev 10:501–508

    CAS  Google Scholar 

  61. Shiau RJ, Chen KY, Wen YD et al (2010) Genistein and beta-carotene enhance the growth-inhibitory effect of trichostatin A in A549 cells. Eur J Nutr 49:19–25

    Article  CAS  PubMed  Google Scholar 

  62. Khan N, Afaq F, Khusro FH et al (2012) Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. Int J Cancer 130:1695–1705

    Article  CAS  PubMed  Google Scholar 

  63. Meydani M, Cohn JS, Macauley JB et al (1989) Postprandial changes in the plasma concentration of alpha- and gamma-tocopherol in human subjects fed a fat-rich meal supplemented with fat-soluble vitamins. J Nutrn 119:1252–1258

    Article  CAS  Google Scholar 

  64. Tsiligianni IG, van der Molen MT (2010) A systematic review of the role of vitamin insufficiencies and supplementation in COPD. Respir Res 11(1):171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mateen S, Tyagi A, Agarwal C et al (2010) Singh RP, Agarwal R. Silibinin inhibits human nonsmall cell lungcancer cell growth through cell-cycle arrest by modulating expression and function of key cell-cycle regulators. Mol Carcinog 49:247–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ma L, Wang R, Nan Y et al (2016) Phloretin exhibits an anticancer effect and enhances the anticancer ability of cisplatin on non-small cell lung cancer cell lines by regulating expression of apoptotic pathways and matrix metallo proteinases. Int J Oncol 48:843–853

    Article  CAS  PubMed  Google Scholar 

  67. Lee HJ, Lee HJ, Lee EO et al (2009) In vivo anti-cancer activity of Korean Angelica gigas and its major pyranocoumarin decursin. Am J Chinese Med 37(01):127–142

    Article  CAS  Google Scholar 

  68. Lu YY, Chen TS, Qu JL et al (2009) Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells. J Biomed Sci 16(1):1–5

    Article  CAS  Google Scholar 

  69. Koshkina NV, Gilbert BE, Waldrep JC et al (1999) Distribution of camptothecin after delivery as a liposome aerosol or following intramuscular injection in mice. Cancer Chemother Pharmacol 44(3):187–192

    Article  CAS  PubMed  Google Scholar 

  70. Alexandrow MG, Song LJ, Altiok S et al (2012) Curcumin: a novel stat 3 pathway inhibitor for chemoprevention of lung cancer. Eur J Cancer Prev 21(5):407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang T, Chen Y, Ge Y et al (2018) Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharma Sin B 8(3):440–448

    Article  Google Scholar 

  72. Thomas SL, Zhao J, Li Z et al (2010) Activation of the p38 pathway by a novel monoketone curcumin analog, EF24, suggests a potential combination strategy. Biochem Pharmacol 80(9):1309–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhao J, Li QQ, Zou B et al (2007) In vitro combination characterization of the new anticancer plant drug β-elemene with taxanes against human lung carcinoma. Int J Oncol 31(2):241–252

    CAS  PubMed  Google Scholar 

  74. Tsai AC, Pan SL, Liao CH et al (2010) Moscatilin, a bibenzyl derivative from the India orchid Dendrobrium loddigesii, suppresses tumor angiogenesis and growth in vitro and in vivo. Cancer Lett 292(2):163–170

    Article  CAS  PubMed  Google Scholar 

  75. Fang C, Zhang J, Qi D et al (2014) Evodiamine induces G2/M arrest and apoptosis via mitochondrial and endoplasmic reticulum pathways in H446 and H1688 human small-cell lung cancer cells. PloS one 9(12):e115204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Hsu HF, Houng JY, Kuo CF et al (2008) Glossogin, a novel phenylpropanoid from Glossogyne tenuifolia, induced apoptosis in A549 lung cancer cells. Food Chem Toxicol 46(12):3785–3791

    Article  CAS  PubMed  Google Scholar 

  77. Shi J, Liu F, Zhang W et al (2015) Epigallocatechin-3-gallate inhibits nicotineinduced migration and invasion by the suppression of angiogenesis and epithelial mesenchymal transition in non-small cell lung cancer cells. Oncol Rep 33(6):2972–2980

    Article  CAS  PubMed  Google Scholar 

  78. Zhao P, Pan Z, Luo Y et al (2015) Alantolactone induces apoptosis and cell cycle arrest on lung squamous cancer SK-MES-1 cells. J Biochem Mol Toxicol 29(5):199–206

    Article  CAS  PubMed  Google Scholar 

  79. Shieh JM, Cheng TH, Shi MD et al (2011) α-Tomatine suppresses invasion and migration of human non-small cell lung cancer NCI-H460 cells through inactivating FAK/PI3K/Akt signaling pathway and reducing binding activity of NF-κB. Cell Biochem Biophys 60(3):297–310

    Article  CAS  PubMed  Google Scholar 

  80. Shukla S, Khan S, Kumar S et al (2015) Cucurbitacin B alters the expression of tumor-related genes by epigenetic modifications in NSCLC and inhibits NNK-induced lung tumorigenesis. Cancer Prev Res 8(6):552–562

    Article  CAS  Google Scholar 

  81. Jiang QQ, Fan LY, Yang GL et al (2008) Improved therapeutic effectiveness by combining liposomal honokiol with cisplatin in lung cancer model. BMC Cancer 8:242

    Article  PubMed  PubMed Central  Google Scholar 

  82. Elgohary MM, Helmy MW, Mortada SM et al (2018) Dual-targeted nano-in-nano albumin carriers enhance the efficacy of combined chemo/herbal therapy of lung cancer. Nanomedicine 13(17):2221–2224

    Article  CAS  PubMed  Google Scholar 

  83. Zheng GQ, Kenney PM, Zhang J et al (1992) Inhibition of benzopyrene-induced tumorigenesis by myristicin, a volatile aroma constituent of parsley leaf oil. Carcinogenesis 13(10):1921–1923

    Article  CAS  PubMed  Google Scholar 

  84. Gomathinayagam R, Sowmyalakshmi S, Mardhatillah F et al (2008) Anticancer mechanism of plumbagin, a natural compound, on non-small cell lung cancer cells. Anticancer Res 28:785–792

    CAS  PubMed  Google Scholar 

  85. Zhang Q, Pan J, Lubet RA et al (2015) Targeting the insulin-like growth factor-1 receptor by picropodophyllin for lung cancer chemoprevention. Mol carcinogen 54(S1):E129–E137

    Article  CAS  Google Scholar 

  86. Wei Y, Xu Y, Han X et al (2013) Anti-cancer effects of dioscin on three kinds of human lung cancer cell lines through inducing DNA damage and activating mitochondrial signal pathway. Food Chem Toxicol 59:118–128

    Article  CAS  PubMed  Google Scholar 

  87. Akhtar S, Meeran SM, Katiyar N et al (2009) Grape seed proanthocyanidins inhibit the growth of human non-small cell lung cancer xenografts by targeting insulin-like growth factor binding protein-3, tumor cell proliferation, and angiogenic factors. Clin Cancer Res 15(3):821–831

    Article  CAS  PubMed  Google Scholar 

  88. Su J, Yan Y, Qu J et al (2017) Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway. Oncol Rep 37(3):1565–1572

    Article  PubMed  Google Scholar 

  89. Liang CH, Liu LF, Shiu LY et al (2004) Action of solamargine on TNFs and cisplatin-resistant human lung cancer cells. Biochem Bioph Res Co 322(3):751–758

    Article  CAS  Google Scholar 

  90. Xue R, Han N, Xia M et al (2015) TXA9, A cardiac glycoside from Streptocaulon juventas, exerts a potent anti-tumor activity against human non-small cell lung cancer cells in vitro and in vivo. Steroids 94:51–59

    Article  CAS  PubMed  Google Scholar 

  91. Frese S, Pirnia F, Miescher D et al (2003) PG490-mediated sensitization of lung cancer cells to Apo2L/TRAIL-induced apoptosis requires activation of ERK2. Oncogene 22(35):5427–5435

    Article  CAS  PubMed  Google Scholar 

  92. Li M, Li X, Li JC et al (2010) Possible mechanisms of trichosanthin-induced apoptosis of tumor cells. Ant Rec 293(6):986–992

    Article  CAS  Google Scholar 

  93. Chen Q, Peng W, Qi S et al (2002) Apoptosis of human highly metastatic lung cancer cell line 95-D induced by acutiaporberine, a novel bisalkaloid derived from Thalictrum acutifolium. Planta Med 68(6):550–553

    Article  CAS  PubMed  Google Scholar 

  94. Lin Y, Xu J, Liao H et al (2014) Piperine induces apoptosis of lung cancer A549 cells via p53-dependent mitochondrial signaling pathway. Tumor Biol 35(4):3305–3310

    Article  CAS  Google Scholar 

  95. Chen RJ, Tsai SJ, Ho CT et al (2012) Chemopreventive effects of pterostilbene on urethane-induced lung carcinogenesis in mice via the inhibition of EGFR-mediated pathways and the induction of apoptosis and autophagy. J Agric Food Chem 60(46):11533–11541

    Article  CAS  PubMed  Google Scholar 

  96. Zhou Y, Gao W, Li K et al (2008) Chinese herbal medicine in the treatment of lung cancer. Asian J Tradit Med 3(1):1–11

    CAS  Google Scholar 

  97. Ranga RS, Sowmyalakshmi S, Burikhanov R et al (2005) A herbal medicine for the treatment of lung cancer. Mol Cell Biochem 280(1–2):125–133. https://doi.org/10.1007/s11010-005-8518-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Dureja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhiman, A., Dureja, H. (2021). Exploring the Potential of Medicinal Plants in Lung Cancer. In: Dua, K., Nammi, S., Chang, D., Chellappan, D.K., Gupta, G., Collet, T. (eds) Medicinal Plants for Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6850-7_11

Download citation

Publish with us

Policies and ethics