Skip to main content

Effect of Sintering Temperature and Holding Time on Ionic Conductivity for Li6.4La3Zr1.4Ta0.6O12 Electrolyte

  • Conference paper
  • First Online:
The Proceedings of the 9th Frontier Academic Forum of Electrical Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 743))

Abstract

Garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) is considered as one of the most potential electrolytes for solid state lithium batteries. Sintering process is a critical step in the preparation of LLZTO. Herein, LLZTO solid-state electrolytes were prepared by high temperature solid-phase reaction with different sintering temperature from 1150 to 1250 °C and different sintering holding time from 1 min to 60 min. According to EIS, electrolytes with high ionic conductivity up to 8.1 × 10−4 S cm−1 were obtained by sintering at 1200 °C for 20 min. Besides, LLZTO pellets prepared in this experimental condition show high density reaching up to 97.6%. Li symmetric cell with the LLZTO sintered at 1200 °C for 20 min also exhibits stable cycle performance under current density of 0.25 mA cm−2 at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Doughty, D.H., P.C. Butler, A. Akhil, et al. 2010. Batteries for large-scale stationary electrical energy storage. Electrochemical Society Interface 19: 49–53.

    Article  Google Scholar 

  2. Samson, A.J., K. Hofstetter, S. Bag, et al. 2019. A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy & Environmental Science 12 (10): 2957–2975.

    Article  Google Scholar 

  3. Liu, Q., Z. Geng, C. Han, et al. 2018. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. Journal of Power Sources 389: 120–134.

    Article  Google Scholar 

  4. Zhang, B., R. Tan, L. Yang, et al. 2018. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials 10: 139–159.

    Article  Google Scholar 

  5. Ferraresi, G., M. El Kazzi, L. Czornomaz, et al. 2018. Electrochemical performance of all-solid-state li-ion batteries based on garnet electrolyte using silicon as a model electrode. ACS Energy Letters 3 (4): 1006–1012.

    Article  Google Scholar 

  6. Han, F., J. Yue, C. Chen, et al. 2018. Interphase engineering enabled all-ceramic lithium battery. Joule 2 (3): 497–508.

    Article  Google Scholar 

  7. Bachman, J.C., S. Muy, A. Grimaud, et al. 2016. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical Reviews 116 (1): 140–162.

    Article  Google Scholar 

  8. Manthiram, A., X. Yu, and S. Wang. 2017. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2 (4): 16103.

    Article  Google Scholar 

  9. Takada, K. 2018. Progress in solid electrolytes toward realizing solid-state lithium batteries. Journal of Power Sources 394: 74–85.

    Article  Google Scholar 

  10. Shoji, M., E.J. Cheng, T. Kimura, et al. 2019. Recent progress for all solid state battery using sulfide and oxide solid electrolytes. Journal of Physics. D. Applied Physics 52 (10): 103001.

    Article  Google Scholar 

  11. Kato, Y., S. Hori, T. Saito, et al. 2016. High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 1 (4): 16030.

    Article  Google Scholar 

  12. Shen, F., W. Guo, D. Zeng, et al. 2020. A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte. ACS Applied Materials and Interfaces.

    Google Scholar 

  13. Xue, W., Y. Yang, Q. Yang, et al. 2018. The effect of sintering process on lithium ionic conductivity of Li6.4Al0.2La3Zr2O12 garnet produced by solid-state synthesis. RSC Advances 8 (24): 13083–13088.

    Article  Google Scholar 

  14. Gong, Y., Z.-G. Liu, Y.-J. Jin, et al. 2019. Effect of sintering process on the microstructure and ionic conductivity of Li7–xLa3Zr2–xTaxO12 ceramics. Ceramics International 45 (15): 18439–18444.

    Article  Google Scholar 

  15. Huang, M., A. Dumon, Y. Shen, et al. 2013. Effect of Lithium content and sintering time on conductivity of Li7La3Zr2O12 as solid electrolyte. Journal of the Chinese Ceramic Society 41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Beijing Oriental Sun Cult. Comm. CO Ltd

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, J., Guo, W., Yang, H., Shen, F., Han, X. (2021). Effect of Sintering Temperature and Holding Time on Ionic Conductivity for Li6.4La3Zr1.4Ta0.6O12 Electrolyte. In: Chen, W., Yang, Q., Wang, L., Liu, D., Han, X., Meng, G. (eds) The Proceedings of the 9th Frontier Academic Forum of Electrical Engineering. Lecture Notes in Electrical Engineering, vol 743. Springer, Singapore. https://doi.org/10.1007/978-981-33-6609-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6609-1_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6608-4

  • Online ISBN: 978-981-33-6609-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics