Skip to main content

Aptamers for the Diagnosis and Therapy of Neurodegenerative Diseases

  • Chapter
  • First Online:
  • 482 Accesses

Abstract

Aptamers are small single-stranded DNA or RNA oligonucleotide fragments or small peptides, which can bind to targets by high affinity and specificity. Because aptamers are specific, non-immunogenic, and non-toxic, they are ideal materials for clinical applications. Nowadays, neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, Transmissible spongiform encephalopathies, Huntington’s disease, are obsessing the lives of patients. These diseases are mainly characterized by neuronal dysfunction and death, and most of these diseases are associated with the accumulation of misfolded proteins in the central nervous system. Although the pathologic mechanisms of neurodegenerative diseases are still elusive, much progress has been made in recent years, especially in the field of diagnosis and therapy of these diseases. With the advancements of the technologies, aptamers, due to their advantages, have opened up new areas in the research field of neurodegenerative diseases. In this chapter, we provide an overview of aptamers’ applications in the diagnosis and therapy of these neurodegenerative diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bruno JG (2015) Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules 20(4):6866–6887. https://doi.org/10.3390/molecules20046866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Santosh B, Yadava PK (2014) Nucleic acid aptamers: research tools in disease diagnostics and therapeutics. Biomed Res Int 2014:540451. https://doi.org/10.1155/2014/540451

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pei X, Zhang J, Liu J (2014) Clinical applications of nucleic acid aptamers in cancer. Mol Clin Oncol 2(3):341–348. https://doi.org/10.3892/mco.2014.255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. https://doi.org/10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  5. Khoshbin Z, Housaindokht MR, Verdian A (2020) A low-cost paper-based aptasensor for simultaneous trace-level monitoring of mercury (II) and silver (I) ions. Anal Biochem:113689. https://doi.org/10.1016/j.ab.2020.113689

  6. Mannironi C, Scerch C, Fruscoloni P, Tocchini-Valentini GP (2000) Molecular recognition of amino acids by RNA aptamers: the evolution into an L-tyrosine binder of a dopamine-binding RNA motif. RNA 6(4):520–527. https://doi.org/10.1017/s1355838200991763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Williams KP, Liu XH, Schumacher TN, Lin HY, Ausiello DA, Kim PS, Bartel DP (1997) Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proc Natl Acad Sci USA 94(21):11285–11290. https://doi.org/10.1073/pnas.94.21.11285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karimzadeh A, Hasanzadeh M, Shadjou N (2019) Bio-assay: the best alternative for conventional methods in detection of epidermal growth factor. Int J Biol Macromol 133:624–639. https://doi.org/10.1016/j.ijbiomac.2019.04.121

    Article  CAS  PubMed  Google Scholar 

  9. Chen HW, Medley CD, Sefah K, Shangguan D, Tang Z, Meng L, Smith JE, Tan W (2008) Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 3(6):991–1001. https://doi.org/10.1002/cmdc.200800030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang Z, Shangguan D, Wang K, Shi H, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan W (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79(13):4900–4907. https://doi.org/10.1021/ac070189y

    Article  CAS  PubMed  Google Scholar 

  11. Lorger M, Engstler M, Homann M, Goringer HU (2003) Targeting the variable surface of African trypanosomes with variant surface glycoprotein-specific, serum-stable RNA aptamers. Eukaryot Cell 2(1):84–94. https://doi.org/10.1128/ec.2.1.84-94.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kanwar JR, Mohan RR, Kanwar RK, Roy K, Bawa R (2010) Applications of aptamers in nanodelivery systems in cancer, eye and inflammatory diseases. Nanomedicine 5(9):1435–1445. https://doi.org/10.2217/nnm.10.115

    Article  CAS  PubMed  Google Scholar 

  13. Zou X, Wu J, Gu J, Shen L, Mao L (2019) Application of aptamers in virus detection and antiviral therapy. Front Microbiology 10:1462. https://doi.org/10.3389/fmicb.2019.01462

    Article  Google Scholar 

  14. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. https://doi.org/10.1126/science.2200121

    Article  CAS  PubMed  Google Scholar 

  15. Ali MH, Elsherbiny ME, Emara M (2019) Updates on aptamer research. Int J Mol Sci 20(10). https://doi.org/10.3390/ijms20102511

  16. Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z (2019) Advances in aptamer screening technologies. Talanta 200:124–144. https://doi.org/10.1016/j.talanta.2019.03.015

    Article  CAS  PubMed  Google Scholar 

  17. Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN (2019) Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 37(1):28–50. https://doi.org/10.1016/j.biotechadv.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Lai BS, Juhas M (2019) Recent advances in aptamer discovery and applications. Molecules 24(5). https://doi.org/10.3390/molecules24050941

  19. Bauer M, Strom M, Hammond DS, Shigdar S (2019) Anything you can do, i can do better: can aptamers replace antibodies in clinical diagnostic applications? Molecules 24(23). https://doi.org/10.3390/molecules24234377

  20. Toh SY, Citartan M, Gopinath SC, Tang TH (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403. https://doi.org/10.1016/j.bios.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  21. Zamay TN, Zamay GS, Shnayder NA, Dmitrenko DV, Zamay SS, Yushchenko V, Kolovskaya OS, Susevski V, Berezovski MV, Kichkailo AS (2020) Nucleic acid aptamers for molecular therapy of epilepsy and blood-brain barrier damages. Mol Ther Nucl Acids 19:157–167. https://doi.org/10.1016/j.omtn.2019.10.042

    Article  CAS  Google Scholar 

  22. Yazdian-Robati R, Bayat P, Oroojalian F, Zargari M, Ramezani M, Taghdisi SM, Abnous K (2019) Therapeutic applications of AS1411 aptamer, an update review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.11.118

    Article  PubMed  Google Scholar 

  23. Panigaj M, Johnson MB, Ke W, McMillan J, Goncharova EA, Chandler M, Afonin KA (2019) Aptamers as modular components of therapeutic nucleic acid nanotechnology. ACS Nano. https://doi.org/10.1021/acsnano.9b06522

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nuzzo S, Roscigno G, Affinito A, Ingenito F, Quintavalle C, Condorelli G (2019) Potential and challenges of aptamers as specific carriers of therapeutic oligonucleotides for precision medicine in cancer. Cancers 11(10). https://doi.org/10.3390/cancers11101521

  25. Maimaitiyiming Y, Hong F, Yang C, Naranmandura H (2019) Novel insights into the role of aptamers in the fight against cancer. J Cancer Res Clin Oncol 145(4):797–810. https://doi.org/10.1007/s00432-019-02882-7

    Article  CAS  PubMed  Google Scholar 

  26. Li W, Zhao M, Yan H, Wang K, Lan X (2019) Aptamer oligonucleotides as potential therapeutics in hematologic diseases. Mini Rev Med Chem 19(10):788–795. https://doi.org/10.2174/1389557517666171002160526

    Article  CAS  PubMed  Google Scholar 

  27. Group VISiONCT, Chakravarthy U, Adamis AP, Cunningham ET, Jr., Goldbaum M, Guyer DR, Katz B, Patel M (2006) Year 2 efficacy results of 2 randomized controlled clinical trials of pegaptanib for neovascular age-related macular degeneration. Ophthalmology 113(9):1508 e1501–1525. https://doi.org/10.1016/j.ophtha.2006.02.064

  28. Feucht N, Matthias H, Lohmann CP, Maier M (2008) Pegaptanib sodium treatment in neovascular age-related macular degeneration: clinical experience in Germany. Clin Ophthalmol 2(2):253–259. https://doi.org/10.2147/opth.s2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan MY, Rusconi CP, Alexander JH, Tonkens RM, Harrington RA, Becker RC (2008) A randomized, repeat-dose, pharmacodynamic and safety study of an antidote-controlled factor IXa inhibitor. J Thromb Aemost JTH 6(5):789–796. https://doi.org/10.1111/j.1538-7836.2008.02932.x

    Article  CAS  Google Scholar 

  30. Gilbert JC, DeFeo-Fraulini T, Hutabarat RM, Horvath CJ, Merlino PG, Marsh HN, Healy JM, Boufakhreddine S, Holohan TV, Schaub RG (2007) First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation 116(23):2678–2686. https://doi.org/10.1161/CIRCULATIONAHA.107.724864

    Article  CAS  PubMed  Google Scholar 

  31. Garcia JC, Bustos RH (2018) The genetic diagnosis of neurodegenerative diseases and therapeutic perspectives. Brain Sci 8 (12). https://doi.org/10.3390/brainsci8120222

  32. Qu J, Yu S, Zheng Y, Zheng Y, Yang H, Zhang J (2017) Aptamer and its applications in neurodegenerative diseases. Cell Mol Life Sci CMLS 74(4):683–695. https://doi.org/10.1007/s00018-016-2345-4

    Article  CAS  PubMed  Google Scholar 

  33. Bobkova NV, Poltavtseva RA, Leonov SV, Sukhikh GT (2020) Neuroregeneration: regulation in neurodegenerative diseases and aging. Biochem Biokhimiia 85(Suppl 1):S108–S130. https://doi.org/10.1134/S0006297920140060

    Article  CAS  Google Scholar 

  34. Peng C, Trojanowski JQ, Lee VM (2020) Protein transmission in neurodegenerative disease. Nat Rev Neurol. https://doi.org/10.1038/s41582-020-0333-7

    Article  PubMed  Google Scholar 

  35. Gandhi J, Antonelli AC, Afridi A, Vatsia S, Joshi G, Romanov V, Murray IVJ, Khan SA (2019) Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Rev Neurosci 30(4):339–358. https://doi.org/10.1515/revneuro-2016-0035

    Article  PubMed  Google Scholar 

  36. Espay AJ, Vizcarra JA, Marsili L, Lang AE, Simon DK, Merola A, Josephs KA, Fasano A, Morgante F, Savica R, Greenamyre JT, Cambi F, Yamasaki TR, Tanner CM, Gan-Or Z, Litvan I, Mata IF, Zabetian CP, Brundin P, Fernandez HH, Standaert DG, Kauffman MA, Schwarzschild MA, Sardi SP, Sherer T, Perry G, Leverenz JB (2019) Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurol 92(7):329–337. https://doi.org/10.1212/WNL.0000000000006926

    Article  CAS  Google Scholar 

  37. Chakrabarti S, Khemka VK, Banerjee A, Chatterjee G, Ganguly A, Biswas A (2015) Metabolic risk factors of sporadic alzheimer’s disease: implications in the pathology, pathogenesis and treatment. Aging Dis 6(4):282–299. https://doi.org/10.14336/AD.2014.002

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M (2019) Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomed 14:5541–5554. https://doi.org/10.2147/IJN.S200490

    Article  CAS  Google Scholar 

  39. Alzheimer’s disease facts and figures (2020) Alzheimer’s & dementia: the journal of the Alzheimer’s Association. https://doi.org/10.1002/alz.12068

  40. Reiman EM (2016) Alzheimer’s disease: attack on amyloid-beta protein. Nature 537(7618):36–37. https://doi.org/10.1038/537036a

    Article  CAS  PubMed  Google Scholar 

  41. Selkoe DJ (1994) Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 10:373–403. https://doi.org/10.1146/annurev.cb.10.110194.002105

    Article  CAS  PubMed  Google Scholar 

  42. Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15(23):2321–2328. https://doi.org/10.2174/092986708785909111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu W, Zhang X, Tung YC, Xie S, Liu F, Iqbal K (2016) Hyperphosphorylation determines both the spread and the morphology of tau pathology. Alzheimer’s Dement J Alzheimer’s Assoc 12(10):1066–1077. https://doi.org/10.1016/j.jalz.2016.01.014

    Article  Google Scholar 

  44. Mazanetz MP, Fischer PM (2007) Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov 6(6):464–479. https://doi.org/10.1038/nrd2111

    Article  CAS  PubMed  Google Scholar 

  45. Tu S, Okamoto S, Lipton SA, Xu H (2014) Oligomeric Abeta-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegene 9:48. https://doi.org/10.1186/1750-1326-9-48

    Article  CAS  Google Scholar 

  46. Trambauer J, Fukumori A, Steiner H (2020) Pathogenic Abeta generation in familial Alzheimer’s disease: novel mechanistic insights and therapeutic implications. Curr Opin Neurobiol 61:73–81. https://doi.org/10.1016/j.conb.2020.01.011

    Article  CAS  PubMed  Google Scholar 

  47. Ylera F, Lurz R, Erdmann VA, Furste JP (2002) Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide. Biochem Biophys Res Commun 290(5):1583–1588. https://doi.org/10.1006/bbrc.2002.6354

    Article  CAS  PubMed  Google Scholar 

  48. Farrar CT, William CM, Hudry E, Hashimoto T, Hyman BT (2014) RNA aptamer probes as optical imaging agents for the detection of amyloid plaques. PLoS ONE 9(2):e89901. https://doi.org/10.1371/journal.pone.0089901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rahimi F, Murakami K, Summers JL, Chen CH, Bitan G (2009) RNA aptamers generated against oligomeric Abeta40 recognize common amyloid aptatopes with low specificity but high sensitivity. PLoS ONE 4(11):e7694. https://doi.org/10.1371/journal.pone.0007694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu L, Zhang J, Wang F, Wang Y, Lu L, Feng C, Xu Z, Zhang W (2016) Selective amyloid beta oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification. Biosens Bioelectron 78:206–212. https://doi.org/10.1016/j.bios.2015.11.048

    Article  CAS  PubMed  Google Scholar 

  51. Rahimi F, Bitan G (2010) Selection of aptamers for amyloid beta-protein, the causative agent of Alzheimer’s disease. J Vis Exp JoVE (39). https://doi.org/10.3791/1955

  52. Tsukakoshi K, Abe K, Sode K, Ikebukuro K (2012) Selection of DNA aptamers that recognize alpha-synuclein oligomers using a competitive screening method. Anal Chem 84(13):5542–5547. https://doi.org/10.1021/ac300330g

    Article  CAS  PubMed  Google Scholar 

  53. Chakravarthy M, AlShamaileh H, Huang H, Tannenberg RK, Chen S, Worrall S, Dodd PR, Veedu RN (2018) Development of DNA aptamers targeting low-molecular-weight amyloid-beta peptide aggregates in vitro. Chem Commun 54(36):4593–4596. https://doi.org/10.1039/c8cc02256a

    Article  CAS  Google Scholar 

  54. Murakami K, Obata Y, Sekikawa A, Ueda H, Izuo N, Awano T, Takabe K, Shimizu T, Irie K (2020) An RNA aptamer with potent affinity for a toxic dimer of amyloid beta42 has potential utility for histochemical studies of Alzheimer’s disease. J Biol Chem. https://doi.org/10.1074/jbc.RA119.010955

    Article  PubMed  PubMed Central  Google Scholar 

  55. Das U, Wang L, Ganguly A, Saikia JM, Wagner SL, Koo EH, Roy S (2016) Visualizing APP and BACE-1 approximation in neurons yields insight into the amyloidogenic pathway. Nat Neurosci 19(1):55–64. https://doi.org/10.1038/nn.4188

    Article  CAS  PubMed  Google Scholar 

  56. Liang H, Shi Y, Kou Z, Peng Y, Chen W, Li X, Li S, Wang Y, Wang F, Zhang X (2015) Inhibition of BACE1 activity by a DNA aptamer in an Alzheimer’s disease cell model. PLoS ONE 10(10):e0140733. https://doi.org/10.1371/journal.pone.0140733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rentmeister A, Bill A, Wahle T, Walter J, Famulok M (2006) RNA aptamers selectively modulate protein recruitment to the cytoplasmic domain of beta-secretase BACE1 in vitro. RNA 12(9):1650–1660. https://doi.org/10.1261/rna.126306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132. https://doi.org/10.1038/nature07761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo JL, Lee VM (2011) Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286(17):15317–15331. https://doi.org/10.1074/jbc.M110.209296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eftekharzadeh B, Daigle JG, Kapinos LE, Coyne A, Schiantarelli J, Carlomagno Y, Cook C, Miller SJ, Dujardin S, Amaral AS, Grima JC, Bennett RE, Tepper K, DeTure M, Vanderburg CR, Corjuc BT, DeVos SL, Gonzalez JA, Chew J, Vidensky S, Gage FH, Mertens J, Troncoso J, Mandelkow E, Salvatella X, Lim RYH, Petrucelli L, Wegmann S, Rothstein JD, Hyman BT (2018) Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron 99 (5):925–940 e927. https://doi.org/10.1016/j.neuron.2018.07.039

  61. Krylova SM, Musheev M, Nutiu R, Li Y, Lee G, Krylov SN (2005) Tau protein binds single-stranded DNA sequence specifically–the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 579(6):1371–1375. https://doi.org/10.1016/j.febslet.2005.01.032

    Article  CAS  PubMed  Google Scholar 

  62. Kim S, Wark AW, Lee HJ (2016) Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance. Anal Chem 88(15):7793–7799. https://doi.org/10.1021/acs.analchem.6b01825

    Article  CAS  PubMed  Google Scholar 

  63. Ziu I, Laryea ET, Alashkar F, Wu CG, Martic S (2020) A dip-and-read optical aptasensor for detection of tau protein. Anal Bioanal Chem 412(5):1193–1201. https://doi.org/10.1007/s00216-019-02350-8

    Article  CAS  PubMed  Google Scholar 

  64. Tao D, Shui B, Gu Y, Cheng J, Zhang W, Jaffrezic-Renault N, Song S, Guo Z (2019) Development of a label-free electrochemical aptasensor for the detection of Tau381 and its preliminary application in AD and Non-AD Patients’ Sera. Biosensors 9(3). https://doi.org/10.3390/bios9030084

  65. Lisi S, Fiore E, Scarano S, Pascale E, Boehman Y, Duconge F, Chierici S, Minunni M, Peyrin E, Ravelet C (2018) Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal Chim Acta 1038:173–181. https://doi.org/10.1016/j.aca.2018.07.029

    Article  CAS  PubMed  Google Scholar 

  66. Teng IT, Li X, Yadikar HA, Yang Z, Li L, Lyu Y, Pan X, Wang KK, Tan W (2018) Identification and characterization of DNA aptamers specific for phosphorylation epitopes of tau protein. J Am Chem Soc 140(43):14314–14323. https://doi.org/10.1021/jacs.8b08645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim JH, Kim E, Choi WH, Lee J, Lee JH, Lee H, Kim DE, Suh YH, Lee MJ (2016) Inhibitory RNA aptamers of tau oligomerization and their neuroprotective roles against proteotoxic stress. Mol Pharm 13(6):2039–2048. https://doi.org/10.1021/acs.molpharmaceut.6b00165

    Article  CAS  PubMed  Google Scholar 

  68. Du TT, Wang L, Duan CL, Lu LL, Zhang JL, Gao G, Qiu XB, Wang XM, Yang H (2015) GBA deficiency promotes SNCA/alpha-synuclein accumulation through autophagic inhibition by inactivated PPP2A. Autophagy 11(10):1803–1820. https://doi.org/10.1080/15548627.2015.1086055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Auluck PK, Caraveo G, Lindquist S (2010) alpha-Synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol 26:211–233. https://doi.org/10.1146/annurev.cellbio.042308.113313

    Article  CAS  PubMed  Google Scholar 

  70. Zhao J, Yu S, Zheng Y, Yang H, Zhang J (2017) Oxidative modification and its implications for the neurodegeneration of Parkinson’s disease. Mol Neurobiol 54(2):1404–1418. https://doi.org/10.1007/s12035-016-9743-3

    Article  CAS  PubMed  Google Scholar 

  71. Kamel F (2013) Epidemiology paths from pesticides to Parkinson’s. Science 341(6147):722–723. https://doi.org/10.1126/science.1243619

    Article  CAS  PubMed  Google Scholar 

  72. Goedert M (2015) NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science 349 (6248):1255555. https://doi.org/10.1126/science.1255555

  73. Armstrong MJ, Okun MS (2020) Diagnosis and treatment of parkinson disease: a review. JAMA 323(6):548–560. https://doi.org/10.1001/jama.2019.22360

    Article  PubMed  Google Scholar 

  74. Deleersnijder A, Gerard M, Debyser Z, Baekelandt V (2013) The remarkable conformational plasticity of alpha-synuclein: blessing or curse? Trends Mol Med 19(6):368–377. https://doi.org/10.1016/j.molmed.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  75. Bernal-Conde LD, Ramos-Acevedo R, Reyes-Hernandez MA, Balbuena-Olvera AJ, Morales-Moreno ID, Arguero-Sanchez R, Schule B, Guerra-Crespo M (2019) Alpha-Synuclein physiology and pathology: a perspective on cellular structures and organelles. Front Neurosci 13:1399. https://doi.org/10.3389/fnins.2019.01399

    Article  PubMed  Google Scholar 

  76. Weng CH, Huang CJ, Lee GB (2012) Screening of aptamers on microfluidic systems for clinical applications. Sensors 12(7):9514–9529. https://doi.org/10.3390/s120709514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsukakoshi K, Harada R, Sode K, Ikebukuro K (2010) Screening of DNA aptamer which binds to alpha-synuclein. Biotech Lett 32(5):643–648. https://doi.org/10.1007/s10529-010-0200-5

    Article  CAS  Google Scholar 

  78. Sun K, Xia N, Zhao L, Liu K, Hou W, Liu L (2017) Aptasensors for the selective detection of alpha-synuclein oligomer by colorimetry, surface plasmon resonance and electrochemical impedance spectroscopy. Sens Actuators B Chem 245:87–94. https://doi.org/10.1016/j.snb.2017.01.171

    Article  CAS  Google Scholar 

  79. Zheng Y, Qu J, Xue F, Zheng Y, Yang B, Chang Y, Yang H, Zhang J (2018) Novel DNA aptamers for Parkinson’s disease treatment inhibit alpha-synuclein aggregation and facilitate its degradation. Mol Ther Nucl Acids 11:228–242. https://doi.org/10.1016/j.omtn.2018.02.011

    Article  CAS  Google Scholar 

  80. Ren X, Zhao Y, Xue F, Zheng Y, Huang H, Wang W, Chang Y, Yang H, Zhang J (2019) Exosomal DNA aptamer targeting alpha-synuclein aggregates reduced neuropathological deficits in a mouse Parkinson’s disease model. Mol Ther Nucl Acids 17:726–740. https://doi.org/10.1016/j.omtn.2019.07.008

    Article  CAS  Google Scholar 

  81. Shaltiel-Karyo R, Frenkel-Pinter M, Egoz-Matia N, Frydman-Marom A, Shalev DE, Segal D, Gazit E (2010) Inhibiting alpha-synuclein oligomerization by stable cell-penetrating beta-synuclein fragments recovers phenotype of Parkinson’s disease model flies. PLoS ONE 5(11):e13863. https://doi.org/10.1371/journal.pone.0013863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kienast T, Heinz A (2006) Dopamine and the diseased brain. CNS Neurol Disord Drug Targets 5(1):109–131

    Article  CAS  PubMed  Google Scholar 

  83. Swanson CJ, Perry KW, Koch-Krueger S, Katner J, Svensson KA, Bymaster FP (2006) Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology 50(6):755–760. https://doi.org/10.1016/j.neuropharm.2005.11.022

    Article  CAS  PubMed  Google Scholar 

  84. Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, Obeso JA (2009) Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol 8(12):1128–1139. https://doi.org/10.1016/S1474-4422(09)70293-5

    Article  CAS  PubMed  Google Scholar 

  85. Zheng J, Zhou X (2007) Sodium dodecyl sulfate-modified carbon paste electrodes for selective determination of dopamine in the presence of ascorbic acid. Bioelectrochemistry 70(2):408–415. https://doi.org/10.1016/j.bioelechem.2006.05.011

    Article  CAS  PubMed  Google Scholar 

  86. Mannironi C, Di Nardo A, Fruscoloni P, Tocchini-Valentini GP (1997) In vitro selection of dopamine RNA ligands. Biochemistry 36(32):9726–9734. https://doi.org/10.1021/bi9700633

    Article  CAS  PubMed  Google Scholar 

  87. Liew FF, Hasegawa T, Fukuda M, Nakata E, Morii T (2011) Construction of dopamine sensors by using fluorescent ribonucleopeptide complexes. Bioorg Med Chem 19(15):4473–4481. https://doi.org/10.1016/j.bmc.2011.06.031

    Article  CAS  PubMed  Google Scholar 

  88. Annoni C, Nakata E, Tamura T, Liew FF, Nakano S, Gelmi ML, Morii T (2012) Construction of ratiometric fluorescent sensors by ribonucleopeptides. Org Biomol Chem 10(44):8767–8769. https://doi.org/10.1039/c2ob26722e

    Article  CAS  PubMed  Google Scholar 

  89. Liu S, Xing X, Yu J, Lian W, Li J, Cui M, Huang J (2012) A novel label-free electrochemical aptasensor based on graphene-polyaniline composite film for dopamine determination. Biosens Bioelectron 36(1):186–191. https://doi.org/10.1016/j.bios.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  90. Farjami E, Campos R, Nielsen JS, Gothelf KV, Kjems J, Ferapontova EE (2013) RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine. Anal Chem 85(1):121–128. https://doi.org/10.1021/ac302134s

    Article  CAS  PubMed  Google Scholar 

  91. Li BR, Hsieh YJ, Chen YX, Chung YT, Pan CY, Chen YT (2013) An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation. J Am Chem Soc 135(43):16034–16037. https://doi.org/10.1021/ja408485m

    Article  CAS  PubMed  Google Scholar 

  92. Aguzzi A, Falsig J (2012) Prion propagation, toxicity and degradation. Nat Neurosci 15(7):936–939. https://doi.org/10.1038/nn.3120

    Article  CAS  PubMed  Google Scholar 

  93. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95(23):13363–13383. https://doi.org/10.1073/pnas.95.23.13363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rhie A, Kirby L, Sayer N, Wellesley R, Disterer P, Sylvester I, Gill A, Hope J, James W, Tahiri-Alaoui A (2003) Characterization of 2’-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion. J Biol Chem 278(41):39697–39705. https://doi.org/10.1074/jbc.M305297200

    Article  CAS  PubMed  Google Scholar 

  95. Sayer NM, Cubin M, Rhie A, Bullock M, Tahiri-Alaoui A, James W (2004) Structural determinants of conformationally selective, prion-binding aptamers. J Biol Chem 279(13):13102–13109. https://doi.org/10.1074/jbc.M310928200

    Article  CAS  PubMed  Google Scholar 

  96. Weiss S, Proske D, Neumann M, Groschup MH, Kretzschmar HA, Famulok M, Winnacker EL (1997) RNA aptamers specifically interact with the prion protein PrP. J Virol 71(11):8790–8797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Proske D, Gilch S, Wopfner F, Schatzl HM, Winnacker EL, Famulok M (2002) Prion-protein-specific aptamer reduces PrPSc formation. Chembiochem Eur J Chem Biol 3(8):717–725. https://doi.org/10.1002/1439-7633(20020802)3:8%3c717:AID-CBIC717%3e3.0.CO;2-C

    Article  CAS  Google Scholar 

  98. Sekiya S, Noda K, Nishikawa F, Yokoyama T, Kumar PK, Nishikawa S (2006) Characterization and application of a novel RNA aptamer against the mouse prion protein. J Biochem 139(3):383–390. https://doi.org/10.1093/jb/mvj046

    Article  CAS  PubMed  Google Scholar 

  99. Mercey R, Lantier I, Maurel MC, Grosclaude J, Lantier F, Marc D (2006) Fast, reversible interaction of prion protein with RNA aptamers containing specific sequence patterns. Adv Virol 151(11):2197–2214. https://doi.org/10.1007/s00705-006-0790-3

    Article  CAS  Google Scholar 

  100. Mashima T, Matsugami A, Nishikawa F, Nishikawa S, Katahira M (2009) Unique quadruplex structure and interaction of an RNA aptamer against bovine prion protein. Nucl Acids Res 37(18):6249–6258. https://doi.org/10.1093/nar/gkp647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Spinney L (2010) Uncovering the true prevalence of Huntington’s disease. Lancet Neurol 9(8):760–761. https://doi.org/10.1016/S1474-4422(10)70160-5

    Article  PubMed  Google Scholar 

  102. Munoz-Sanjuan I, Bates GP (2011) The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease. J Clin Investig 121(2):476–483. https://doi.org/10.1172/JCI45364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chaudhary RK, Patel KA, Patel MK, Joshi RH, Roy I (2015) Inhibition of Aggregation of Mutant Huntingtin by Nucleic Acid Aptamers In Vitro and in a Yeast Model of Huntington’s Disease. Molecular therapy: the journal of the American Society of Gene Therapy 23(12):1912–1926. https://doi.org/10.1038/mt.2015.157

    Article  CAS  Google Scholar 

  104. Shin B, Jung R, Oh H, Owens GE, Lee H, Kwak S, Lee R, Cotman SL, Lee JM, MacDonald ME, Song JJ, Vijayvargia R, Seong IS (2018) Novel DNA aptamers that bind to mutant huntingtin and modify its activity. Mol Ther Nucl Acids 11:416–428. https://doi.org/10.1016/j.omtn.2018.03.008

    Article  CAS  Google Scholar 

  105. Skogen M, Roth J, Yerkes S, Parekh-Olmedo H, Kmiec E (2006) Short G-rich oligonucleotides as a potential therapeutic for Huntington’s Disease. BMC Neurosci 7:65. https://doi.org/10.1186/1471-2202-7-65

    Article  PubMed  PubMed Central  Google Scholar 

  106. Patel KA, Chaudhary RK, Roy I (2018) RNA aptamers rescue mitochondrial dysfunction in a yeast model of huntington’s disease. Mol Ther Nucl Acids 12:45–56. https://doi.org/10.1016/j.omtn.2018.04.010

    Article  CAS  Google Scholar 

  107. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9(7):537–550. https://doi.org/10.1038/nrd3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hu M, Zhang K (2013) The application of aptamers in cancer research: an up-to-date review. Future Oncol 9(3):369–376. https://doi.org/10.2217/fon.12.201

    Article  CAS  PubMed  Google Scholar 

  109. Yang Y, Ren X, Schluesener HJ, Zhang Z (2011) Aptamers: selection, modification and application to nervous system diseases. Curr Med Chem 18(27):4159–4168. https://doi.org/10.2174/092986711797189646

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qu, J., Zhang, J. (2021). Aptamers for the Diagnosis and Therapy of Neurodegenerative Diseases. In: Dong, Y. (eds) Aptamers for Medical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-33-4838-7_12

Download citation

Publish with us

Policies and ethics