Skip to main content

Polysaccharide-Based Composites for Biomedical Applications

  • Chapter
  • First Online:
Biomedical Composites

Abstract

Polysaccharide-based composites have been extensively studied, which is mostly justified by their biocompatible, renewable, and sustainable character, alongside the enhanced reproducibility, processability, and performance achieved by the addition of metals or ceramic or synthetic polymers to the polysaccharide formulations. In this chapter, the most relevant works in the synthesis and development of polysaccharide-based composites, mainly over the last decade, for several applications, such as drug delivery, tissue engineering, bionsensors, and wound dressings, are highlighted. Considering these applications, chitosan, alginate, starch, cellulose, and cellulose derivative composites have a focal position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muhamad II, Lazim NAM, Selvakumaran S (2019a) Natural polysaccharide-based composites for drug delivery and biomedical applications. In: Natural polysaccharides in drug delivery and biomedical applications, pp 419–440. https://doi.org/10.1016/B978-0-12-817055-7.00018-2

  2. Aravamudhan A, Ramos DM, Nada AA, Kumbar SG (2014) Natural polymers: polysaccharides and their derivatives for biomedical applications. Nat Synth Biomed Polym. https://doi.org/10.1016/B978-0-12-396983-5.00004-1

    Article  Google Scholar 

  3. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohyd Polym 82(2):227–232. https://doi.org/10.1016/j.carbpol.2010.04.074

    Article  CAS  Google Scholar 

  4. Soares PIP, Echeverria C, Baptista AC, João CFC, Fernandes SN, Almeida APC, Borges JP (2017) Hybrid polysaccharide-based systems for biomedical applications. In: Hybrid polymer composite materials, pp 107–149. https://doi.org/10.1016/B978-0-08-100785-3.00004-8

  5. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941. https://doi.org/10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  6. Islam S, Bhuiyan MAR, Islam MN (2017) Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 25(3):854–866. https://doi.org/10.1007/s10924-016-0865-5

    Article  CAS  Google Scholar 

  7. Thomas MS, Koshy RR, Mary SK, Thomas S, Pothan AL (2019) Starch, chitin and chitosan based composites and nanocomposites. https://doi.org/10.1007/978-3-030-03158-9

  8. Adhikari HS, Yadav PN (2018) Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int J Biomater 2018:1–29. https://doi.org/10.1155/2018/2952085

    Article  CAS  Google Scholar 

  9. Azuma K, Osaki T, Minami S, Okamoto Y (2015) Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater 6(1):33–49. https://doi.org/10.3390/jfb6010033

    Article  CAS  Google Scholar 

  10. Vasvani S, Kulkarni P, Rawtani D (2019) Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.11.066

    Article  Google Scholar 

  11. Bukhari SNA, Roswandi NL, Waqas M, Habib H, Hussain F, Khan S, Hussain Z (2018) Hyaluronic acid, a promising skin rejuvenating biomedicine: a review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int J Biol Macromol 120:1682–1695. https://doi.org/10.1016/j.ijbiomac.2018.09.188

    Article  CAS  Google Scholar 

  12. Obeid MA, Al Qaraghuli MM, Alsaadi M, Alzahrani AR, Niwasabutra K, Ferro VA (2017) Delivering natural products and biotherapeutics to improve drug efficacy. Ther Deliv 8(11):947–956. https://doi.org/10.4155/tde-2017-0060

    Article  CAS  Google Scholar 

  13. Patra JK, Das G, Fraceto LF, Campos EVR, del Rodriguez-Torres MP, Acosta-Torres LS, Shin H-S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  14. Wahab IF, Razak SIA (2016) Polysaccharides as composite biomaterials. Compos Renew Sustain Mater. https://doi.org/10.5772/65263

    Article  Google Scholar 

  15. Hamidian H, Tavakoli T (2016) Preparation of a new Fe3O4/starch-g-polyester nanocomposite hydrogel and a study on swelling and drug delivery properties. Carbohyd Polym 144:140–148. https://doi.org/10.1016/j.carbpol.2016.02.048

    Article  CAS  Google Scholar 

  16. Chen Y, Qi Y, Yan X, Ma H, Chen J, Liu B, Xue Q (2014) Green fabrication of porous chitosan/graphene oxide composite xerogels for drug delivery. J Appl Polym Sci 131(6):n/a–n/a. https://doi.org/10.1002/app.40006

  17. Zhu M, Zhu Y, Zhang L, Shi J (2013) Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs. Sci Technol Adv Mater 14(4):045005. https://doi.org/10.1088/1468-6996/14/4/045005

    Article  CAS  Google Scholar 

  18. Ghibaudo F, Gerbino E, Hugo AA, Simões MG, Alves P, Costa BFO, Simões PN (2018) Development and characterization of iron-pectin beads as a novel system for iron delivery to intestinal cells. Colloids Surf B 170:538–543. https://doi.org/10.1016/j.colsurfb.2018.06.052

    Article  CAS  Google Scholar 

  19. Almeida JF, Ferreira P, Lopes A, Gil MH (2011) Photocrosslinkable biodegradable responsive hydrogels as drug delivery systems. Int J Biol Macromol 49(5):948–954. https://doi.org/10.1016/j.ijbiomac.2011.08.010

    Article  CAS  Google Scholar 

  20. Schmitt H, Creton N, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2015) Melt-blended halloysite nanotubes/wheat starch nanocomposites as drug delivery system. Polym Eng Sci 55(3):573–580. https://doi.org/10.1002/pen.23919

    Article  CAS  Google Scholar 

  21. Quintana G, Simões MG, Hugo A, Alves P, Ferreira P, Gerbino E, Gómez-Zavaglia A (2017) Layer-by-layer encapsulation of Lactobacillus delbrueckii subsp. Bulgaricus using block-copolymers of poly(acrylic acid) and pluronic for safe release in gastro-intestinal conditions. J Funct Foods 35. https://doi.org/10.1016/j.jff.2017.06.007

  22. Hu X, Gong X (2016) A new route to fabricate biocompatible hydrogels with controlled drug delivery behavior. J Colloid Interface Sci 470:62–70. https://doi.org/10.1016/j.jcis.2016.02.037

    Article  CAS  Google Scholar 

  23. Silva D, Pinto LFV, Bozukova D, Santos LF, Serro AP, Saramago B (2016) Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids Surf B 147:81–89. https://doi.org/10.1016/j.colsurfb.2016.07.047

    Article  CAS  Google Scholar 

  24. Mehrotra P (2016) Biosensors and their applications—a review. J Oral Biol Craniofac Res 6(2):153–159. https://doi.org/10.1016/j.jobcr.2015.12.002

    Article  Google Scholar 

  25. Gil MH, Piedade A, Guthrie JT (1998) Immobilised enzymes and biosensors. In: Salamone JC (ed) Concise polymeric materials encyclopedia

    Google Scholar 

  26. Edwards JV, Prevost N, French A, Concha M, DeLucca A, Wu Q (2013) Nanocellulose-based biosensors: design, preparation, and activity of peptide-linked cotton cellulose nanocrystals having fluorimetric and colorimetric elastase detection sensitivity. Engineering 05(09):20–28. https://doi.org/10.4236/eng.2013.59A003

    Article  Google Scholar 

  27. Ratajczak K, Stobiecka M (2020) High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: a concise review. Carbohyd Polym 229:115463. https://doi.org/10.1016/j.carbpol.2019.115463

    Article  CAS  Google Scholar 

  28. Abdi MM, Razalli RL, Tahir PM, Chaibakhsh N, Hassani M, Mir M (2019) Optimized fabrication of newly cholesterol biosensor based on nanocellulose. Int J Biol Macromol 126:1213–1222. https://doi.org/10.1016/j.ijbiomac.2019.01.001

    Article  CAS  Google Scholar 

  29. Rebelo AR, Liu C, Schäfer K-H, Saumer M, Yang G, Liu Y (2019) Poly(4-vinylaniline)/polyaniline bilayer-functionalized bacterial cellulose for flexible electrochemical biosensors. Langmuir 35(32):10354–10366. https://doi.org/10.1021/acs.langmuir.9b01425

    Article  CAS  Google Scholar 

  30. Ahmad A, Siddique JA, Setapar SHM, Lokhat D, Golandaj A, Ramjugernath D (2018) Recent advances in chitosan-based films for novel biosensor. In: Electrically conductive polymer and polymer composites, pp 137–161. https://doi.org/10.1002/9783527807918.ch7

  31. Bagal-Kestwal DR, Chiang B-H (2019) Exploration of chitinous scaffold-based interfaces for glucose sensing assemblies. Polymers 11(12):1958. https://doi.org/10.3390/polym11121958

    Article  CAS  Google Scholar 

  32. Jiang Y, Wu J (2019) Recent development in chitosan nanocomposites for surface-based biosensor applications. Electrophoresis 40(16–17):2084–2097. https://doi.org/10.1002/elps.201900066

    Article  CAS  Google Scholar 

  33. Teepoo S, Dawan P, Barnthip N (2017) Electrospun chitosan-gelatin biopolymer composite nanofibers for horseradish peroxidase immobilization in a hydrogen peroxide biosensor. Biosensors 7(4):47. https://doi.org/10.3390/bios7040047

    Article  CAS  Google Scholar 

  34. Fois M, Arrigo P, Bacciu A, Monti P, Marceddu S, Rocchitta G, Serra PA (2019) The presence of polysaccharides, glycerol, and polyethyleneimine in hydrogel enhances the performance of the glucose biosensor. Biosensors 9(3):95. https://doi.org/10.3390/bios9030095

    Article  CAS  Google Scholar 

  35. Gautam V, Singh KP, Yadav VL (2018) Polyaniline/multiwall carbon nanotubes/starch nanocomposite material and hemoglobin modified carbon paste electrode for hydrogen peroxide and glucose biosensing. Int J Biol Macromol 111:1124–1132. https://doi.org/10.1016/j.ijbiomac.2018.01.094

    Article  CAS  Google Scholar 

  36. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408. https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10

  37. Ren B, Chen X, Du S, Ma Y, Chen H, Yuan G, Niu X (2018) Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering. Int J Biol Macromol 118:1257–1266. https://doi.org/10.1016/j.ijbiomac.2018.06.200

    Article  CAS  Google Scholar 

  38. Sultankulov B, Berillo D, Sultankulova K, Tokay T, Saparov A (2019) Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules 9(9):470. https://doi.org/10.3390/biom9090470

    Article  CAS  Google Scholar 

  39. Jithendra P, Rajam AM, Kalaivani T, Mandal AB, Rose C (2013) Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. ACS Appl Mater Interfaces 5(15):7291–7298. https://doi.org/10.1021/am401637c

    Article  CAS  Google Scholar 

  40. Li J, Chen G, Xu X, Abdou P, Jiang Q, Shi D, Gu Z (2019) Advances of injectable hydrogel-based scaffolds for cartilage regeneration. (May):129–140. https://doi.org/10.1093/rb/rbz022

  41. Coimbra P, Santos P, Alves P, Miguel SP, Carvalho MP, de Sá KD, Ferreira P (2017) Coaxial electrospun PCL/gelatin-MA fibers as scaffolds for vascular tissue engineering. Colloids Surf B 159. https://doi.org/10.1016/j.colsurfb.2017.07.065

  42. Ferreira P, Santos P, Alves P, Carvalho MP, de Sá KD, Miguel SP, Coimbra P (2017) Photocrosslinkable electrospun fiber meshes for tissue engineering applications. Eur Polymer J 97. https://doi.org/10.1016/j.eurpolymj.2017.10.018

  43. Hinderer S, Layland SL, Schenke-Layland K (2016) ECM and ECM-like materials—Biomaterials for applications in regenerative medicine and cancer therapy. Adv Drug Deliv Rev 97:260–269. https://doi.org/10.1016/j.addr.2015.11.019

    Article  CAS  Google Scholar 

  44. Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG (2009) Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 30(36):6844–6853. https://doi.org/10.1016/j.biomaterials.2009.08.058

    Article  CAS  Google Scholar 

  45. Fricain JC, Aid R, Lanouar S, Maurel DB, Nihouannen D Le, Delmond S, Catros S (2018) Injectable polysaccharide-hydroxyapatite composite material for sinus floor augmentation. Dent Mater 1–12. https://doi.org/10.1016/j.dental.2018.03.021

  46. Cheng K, Huang C, Wei Y, Hsu S (2019) Novel chitosan—cellulose nano fi ber self- healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects. NPG Asia Mater. https://doi.org/10.1038/s41427-019-0124-z

    Article  Google Scholar 

  47. Zhu Y, Kong L, Farhadi F, Xia W, Chang J, He Y, Li H (2019) Biomaterials an injectable continuous strati fi ed structurally and functionally biomimetic construct for enhancing osteochondral regeneration. Biomaterials 192(November 2018):149–158. https://doi.org/10.1016/j.biomaterials.2018.11.017

  48. Hu X, Gao Z, Tan H, Wang H, Mao X, Pang J (2019) An injectable hyaluronic acid-based composite hydrogel by DA click chemistry with pH sensitive nanoparticle for biomedical application. Front Chem 7. https://doi.org/10.3389/fchem.2019.00477

  49. Borda LJ, Macquhae FE, Kirsner RS (2016) Wound dressings: a comprehensive review. Curr Dermatol Rep 5(4):287–297. https://doi.org/10.1007/s13671-016-0162-5

    Article  Google Scholar 

  50. Dhivya S, Padma VV, Santhini E (2015) Wound dressings—a review. BioMedicine 5(4):22. https://doi.org/10.7603/s40681-015-0022-9

    Article  Google Scholar 

  51. Suarato G, Bertorelli R, Athanassiou A (2018) Borrowing from nature: Biopolymers and biocomposites as smart wound care materials. Front Bioeng Biotechnol 6(Oct):1–11. https://doi.org/10.3389/fbioe.2018.00137

  52. Cheng H, Li C, Jiang Y, Wang B, Wang F, Mao Z, Sui X (2018) Facile preparation of polysaccharide-based sponges and their potential application in wound dressing. J Mater Chem B 6(4):634–640. https://doi.org/10.1039/c7tb03000b

    Article  CAS  Google Scholar 

  53. Khan MA, Mujahid M (2019) A review on recent advances in chitosan based composite for hemostatic dressings. Int J Biol Macromol 124:138–147. https://doi.org/10.1016/j.ijbiomac.2018.11.045

    Article  CAS  Google Scholar 

  54. Naseri-Nosar M, Ziora ZM (2018) Wound dressings from naturally-occurring polymers: a review on homopolysaccharide-based composites. In: Carbohydrate polymers, vol 189. https://doi.org/10.1016/j.carbpol.2018.02.003

  55. Hu Y, Zhang Z, Li Y, Ding X, Li D, Shen C, Xu F-J (2018) Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications. Macromol Rapid Commun 39(20):1800069. https://doi.org/10.1002/marc.201800069

    Article  CAS  Google Scholar 

  56. Shabunin A, Yudin V, Dobrovolskaya I, Zinovyev E, Zubov V, Ivan’kova E, Morganti P (2019) Composite wound dressing based on chitin/chitosan nanofibers: processing and biomedical applications. Cosmetics 6(1):16. https://doi.org/10.3390/cosmetics6010016

    Article  CAS  Google Scholar 

  57. Kaczmarek B, Nadolna K, Owczarek A, Michalska-Sionkowska M, Sionkowska A (2019) The characterization of thin films based on chitosan and tannic acid mixture for potential applications as wound dressings. Polym Test 78(March):106007. https://doi.org/10.1016/j.polymertesting.2019.106007

    Article  CAS  Google Scholar 

  58. Li N, Yang X, Liu W, Xi G, Wang M, Liang B, Shi C (2018) Tannic acid cross-linked polysaccharide-based multifunctional hemostatic microparticles for the regulation of rapid wound healing. Macromol Biosci 18(11):1–16. https://doi.org/10.1002/mabi.201800209

    Article  CAS  Google Scholar 

  59. Lu B, Wang T, Li Z, Dai F, Lv L, Tang F, Lan G (2016) Healing of skin wounds with a chitosan–gelatin sponge loaded with tannins and platelet-rich plasma. Int J Biol Macromol 82:884–891. https://doi.org/10.1016/j.ijbiomac.2015.11.009

    Article  CAS  Google Scholar 

  60. Xu F, Weng B, Gilkerson R, Materon LA, Lozano K (2015) Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohyd Polym 115:16–24. https://doi.org/10.1016/j.carbpol.2014.08.081

    Article  CAS  Google Scholar 

  61. Abdul Khalil HPS, Chong EWN, Owolabi FAT, Asniza M, Tye YY, Rizal S, Paridah MT (2019) Enhancement of basic properties of polysaccharide-based composites with organic and inorganic fillers: a review. J Appl Polym Sci 136(12):47251. https://doi.org/10.1002/app.47251

    Article  CAS  Google Scholar 

  62. Li Q, Lu F, Zhou G, Yu K, Lu B, Xiao Y, Lan G (2017) Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing. Biomacromol 18(11):3766–3775. https://doi.org/10.1021/acs.biomac.7b01180

    Article  CAS  Google Scholar 

  63. Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, Chen R (2017) Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohyd Polym 156:460–469. https://doi.org/10.1016/j.carbpol.2016.09.051

    Article  CAS  Google Scholar 

  64. Ma B, Huang Y, Zhu C, Chen C, Chen X, Fan M, Sun D (2016) Novel Cu@SiO2/bacterial cellulose nanofibers: preparation and excellent performance in antibacterial activity. Mater Sci Eng C 62:656–661. https://doi.org/10.1016/j.msec.2016.02.011

    Article  CAS  Google Scholar 

  65. Singla R, Soni S, Kulurkar PM, Kumari ASM, Patial V, Yadav SK (2017) In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohyd Polym 155:152–162. https://doi.org/10.1016/j.carbpol.2016.08.065

    Article  CAS  Google Scholar 

  66. Tran CD, Prosenc F, Franko M (2018) Facile synthesis, structure, biocompatibility and antimicrobial property of gold nanoparticle composites from cellulose and keratin. J Colloid Interface Sci 510:237–245. https://doi.org/10.1016/j.jcis.2017.09.006

    Article  CAS  Google Scholar 

  67. Mihai MM, Dima MB, Dima B, Holban AM (2019) Nanomaterials for wound healing and infection control. Materials 12(13):1–16. https://doi.org/10.3390/ma12132176

    Article  CAS  Google Scholar 

  68. Shao W, Wu J, Wang S, Huang M, Liu X, Zhang R (2017) Construction of silver sulfadiazine loaded chitosan composite sponges as potential wound dressings. Carbohyd Polym 157:1963–1970. https://doi.org/10.1016/j.carbpol.2016.11.087

    Article  CAS  Google Scholar 

  69. Gao Y, Zhang X, Jin X (2019) Preparation and properties of minocycline-loaded carboxymethyl chitosan gel/alginate nonwovens composite wound dressings. Marine Drugs 17(10):575. https://doi.org/10.3390/md17100575

    Article  CAS  Google Scholar 

  70. Carvalho T, Guedes G, Sousa FL, Freire CSR, Santos HA (2019) Latest advances on bacterial cellulose-based materials for wound healing, delivery systems, and tissue engineering. Biotechnol J 14(12):1900059. https://doi.org/10.1002/biot.201900059

    Article  CAS  Google Scholar 

  71. Portela R, Leal CR, Almeida PL, Sobral RG (2019) Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb Biotechnol 12(4):586–610. https://doi.org/10.1111/1751-7915.13392

    Article  CAS  Google Scholar 

  72. Wichai S, Chuysinuan P, Chaiarwut S, Ekabutr P, Supaphol P (2019) Development of bacterial cellulose/alginate/chitosan composites incorporating copper (II) sulfate as an antibacterial wound dressing. J Drug Deliv Sci Technol 51:662–671. https://doi.org/10.1016/j.jddst.2019.03.043

    Article  CAS  Google Scholar 

  73. Ye S, Jiang L, Su C, Zhu Z, Wen Y, Shao W (2019) Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. Int J Biol Macromol 133:148–155. https://doi.org/10.1016/j.ijbiomac.2019.04.095

    Article  CAS  Google Scholar 

  74. Volova TG, Shumilova AA, Nikolaeva ED, Kirichenko AK, Shishatskaya EI (2019) Biotechnological wound dressings based on bacterial cellulose and degradable copolymer P(3HB/4HB). Int J Biol Macromol 131:230–240. https://doi.org/10.1016/j.ijbiomac.2019.03.068

    Article  CAS  Google Scholar 

  75. Rezvanian M, Mohd Amin MCI, Ng SF (2016) Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohyd Polym 137:295–304. https://doi.org/10.1016/j.carbpol.2015.10.091

    Article  CAS  Google Scholar 

  76. Ma R, Wang Y, Qi H, Shi C, Wei G, Xiao L, Guo Z (2019) Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: in vitro and in vivo evaluation. Compos Part B: Eng 167(December 2018):396–405. https://doi.org/10.1016/j.compositesb.2019.03.006

  77. Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER (2020) Alginate-based composite materials for wound dressing application: a mini review. Carbohydr Polym 116025. https://doi.org/10.1016/j.carbpol.2020.116025

    Article  Google Scholar 

  78. Chen K, Wang F, Liu S, Wu X, Xu L, Zhang D (2020) In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. Int J Biol Macromol 148:501–509. https://doi.org/10.1016/j.ijbiomac.2020.01.156

    Article  CAS  Google Scholar 

  79. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23(12):H41–H56. https://doi.org/10.1002/adma.201003963

    Article  CAS  Google Scholar 

  80. Longinotti C (2014) The use of hyaluronic acid based dressings to treat burns: a review. Burns Trauma 2(4):162. https://doi.org/10.4103/2321-3868.142398

    Article  Google Scholar 

  81. Eskandarinia A, Kefayat A, Rafienia M, Agheb M, Navid S, Ebrahimpour K (2019) Cornstarch-based wound dressing incorporated with hyaluronic acid and propolis: in vitro and in vivo studies. Carbohyd Polym 216:25–35. https://doi.org/10.1016/j.carbpol.2019.03.091

    Article  CAS  Google Scholar 

  82. Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A (2019) Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohyd Polym 223:115023. https://doi.org/10.1016/j.carbpol.2019.115023

    Article  CAS  Google Scholar 

  83. Yin F, Lin L, Zhan S (2019) Preparation and properties of cellulose nanocrystals, gelatin, hyaluronic acid composite hydrogel as wound dressing. J Biomater Sci Polym Ed 30(3):190–201. https://doi.org/10.1080/09205063.2018.1558933

    Article  CAS  Google Scholar 

  84. Lin Z, Wu T, Wang W, Li B, Wang M, Chen L, Zhang T (2019) Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int J Biol Macromol 140:330–342. https://doi.org/10.1016/j.ijbiomac.2019.08.087

    Article  CAS  Google Scholar 

  85. Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ (2018) Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm 127:130–141. https://doi.org/10.1016/j.ejpb.2018.02.022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alves, P., Gonçalves, F., Gil, M.H. (2021). Polysaccharide-Based Composites for Biomedical Applications. In: Nayak, A.K., Hasnain, M.S. (eds) Biomedical Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-4753-3_2

Download citation

Publish with us

Policies and ethics