Skip to main content

Immunotherapy for Obesity

  • Chapter
  • First Online:
Therapeutic Vaccines as Novel Immunotherapy

Abstract

Obesity prevalence continues to increase in both adults and children worldwide and greatly contributes to increased morbidity and mortality. Although there are some anti-obesity drugs globally available for clinical use, their inadequate effectiveness coupled with safety concerns sometimes discourage the widespread use of anti-obesity medication. Because of its prolonged therapeutic effect and low frequency of administration, a therapeutic vaccine may be an attractive strategy for the prevention and treatment of obesity. Over the last two decades, several attempts have been made to develop vaccines for the control of obesity. Animal studies have shown that vaccines targeting ghrelin, glucose-dependent insulinotropic polypeptide, adipocytes, somatostatin, and adenovirus 36 successfully led to a reduction in weight gain without serious adverse effects. This chapter provides an overview of recent progress toward a therapeutic vaccine against obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambuhl PM, Tissot AC, Fulurija A et al (2007) A vaccine for hypertension based on virus-like particles: preclinical efficacy and phase I safety and immunogenicity. J Hypertens 25:63–72

    Article  PubMed  CAS  Google Scholar 

  • Andrade S, Pinho F, Ribeiro AM et al (2013) Immunization against active ghrelin using virus-like particles for obesity treatment. Curr Pharm Des 19:6551–6558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asakawa A, Inui A, Fujimiya M et al (2005) Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin. Gut 54:18–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson RL, Dhurandhar NV, Allison DB et al (2005) Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. Int J Obes 29:281–286

    Article  CAS  Google Scholar 

  • Azegami T, Yuki Y, Sawada S et al (2017) Nanogel-based nasal ghrelin vaccine prevents obesity. Mucosal Immunol 10:1351–1360

    Article  CAS  PubMed  Google Scholar 

  • Azegami T, Yuki Y, Nakahashi R et al (2018) Nanogel-based nasal vaccines for infectious and lifestyle-related diseases. Mol Immunol 98:19–24

    Article  CAS  PubMed  Google Scholar 

  • Baum HB, Biller BM, Finkelstein JS et al (1996) Effects of physiologic growth hormone therapy on bone density and body composition in patients with adult-onset growth hormone deficiency. A randomized, placebo-controlled trial. Ann Intern Med 125:883–890

    Article  CAS  PubMed  Google Scholar 

  • Bourinbaiar AS, Jirathitikal V (2010) Effect of oral immunization with pooled antigens derived from adipose tissue on atherosclerosis and obesity indices. Vaccine 28:2763–2768

    Article  CAS  PubMed  Google Scholar 

  • Bray GA, Fruhbeck G, Ryan DH et al (2016) Management of obesity. Lancet 387:1947–1956

    Article  PubMed  Google Scholar 

  • Date Y, Shimbara T, Koda S et al (2006) Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus. Cell Metab 4:323–331

    Article  CAS  PubMed  Google Scholar 

  • Dhurandhar NV, Whigham LD, Abbott DH et al (2002) Human adenovirus Ad-36 promotes weight gain in male rhesus and marmoset monkeys. J Nutr 132:3155–3160

    Article  CAS  PubMed  Google Scholar 

  • Faria AC, Veldhuis JD, Thorner MO et al (1989) Half-time of endogenous growth hormone (GH) disappearance in normal man after stimulation of GH secretion by GH-releasing hormone and suppression with somatostatin. J Clin Endocrinol Metab 68:535–541

    Article  CAS  PubMed  Google Scholar 

  • Flegal KM, Kit BK, Orpana H et al (2013) Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309:71–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulurija A, Lutz TA, Sladko K et al (2008) Vaccination against GIP for the treatment of obesity. PLoS One 3:e3163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghelardoni S, Carnicelli V, Frascarelli S et al (2006) Ghrelin tissue distribution: comparison between gene and protein expression. J Endocrinol Investig 29:115–121

    Article  CAS  Google Scholar 

  • Haffer KN (2012) Effects of novel vaccines on weight loss in diet-induced-obese (DIO) mice. J Anim Sci Biotechnol 3:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heymsfield SB, Wadden TA (2017) Mechanisms, pathophysiology, and management of obesity. N Engl J Med 376:254–266

    Article  CAS  PubMed  Google Scholar 

  • Kenchaiah S, Evans JC, Levy D et al (2002) Obesity and the risk of heart failure. N Engl J Med 347:305–313

    Article  PubMed  Google Scholar 

  • Kim KR, Nam SY, Song YD et al (1999) Low-dose growth hormone treatment with diet restriction accelerates body fat loss, exerts anabolic effect and improves growth hormone secretory dysfunction in obese adults. Horm Res 51:78–84

    CAS  PubMed  Google Scholar 

  • Kojima M, Hosoda H, Date Y et al (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    Article  CAS  PubMed  Google Scholar 

  • Kushnir N, Streatfield SJ, Yusibov V (2012) Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31:58–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai QG, Jiang BQ, Zhou XH et al (2010) The effects and mechanism of xenogeneic adipocyte vaccine for the prevention of obesity in rats. J Int Med Res 38:1700–1707

    Article  CAS  PubMed  Google Scholar 

  • Lamichhane A, Azegami T, Kiyono H (2014) The mucosal immune system for vaccine development. Vaccine 32:6711–6723

    Article  CAS  PubMed  Google Scholar 

  • Lyons MJ, Faust IM, Hemmes RB et al (1982) A virally induced obesity syndrome in mice. Science 216:82–85

    Article  CAS  PubMed  Google Scholar 

  • Maurer P, Jennings GT, Willers J et al (2005) A therapeutic vaccine for nicotine dependence: preclinical efficacy, and Phase I safety and immunogenicity. Eur J Immunol 35:2031–2040

    Article  CAS  PubMed  Google Scholar 

  • McClean PL, Irwin N, Cassidy RS et al (2007) GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am J Physiol Endocrinol Metab 293:E1746–E1755

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki K, Yamada Y, Ban N et al (2002) Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 8:738–742

    Article  CAS  PubMed  Google Scholar 

  • Na HN, Nam JH (2014) Proof-of-concept for a virus-induced obesity vaccine; vaccination against the obesity agent adenovirus 36. Int J Obes 38:1470–1474

    Article  CAS  Google Scholar 

  • Nakazato M, Murakami N, Date Y et al (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198

    Article  CAS  PubMed  Google Scholar 

  • Nochi T, Yuki Y, Takahashi H et al (2010) Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater 9:572–578

    Article  CAS  PubMed  Google Scholar 

  • Renehan AG, Tyson M, Egger M et al (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569–578

    Article  PubMed  Google Scholar 

  • Rogers PM, Fusinski KA, Rathod MA et al (2008) Human adenovirus Ad-36 induces adipogenesis via its E4 orf-1 gene. Int J Obes 32:397–406

    Article  CAS  Google Scholar 

  • Sadry SA, Drucker DJ (2013) Emerging combinatorial hormone therapies for the treatment of obesity and T2DM. Nat Rev Endocrinol 9:425–433

    Article  CAS  PubMed  Google Scholar 

  • Srivastava G, Apovian CM (2018) Current pharmacotherapy for obesity. Nat Rev Endocrinol 14:12–24

    Article  CAS  PubMed  Google Scholar 

  • Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913

    Article  CAS  PubMed  Google Scholar 

  • Vangipuram SD, Sheele J, Atkinson RL et al (2004) A human adenovirus enhances preadipocyte differentiation. Obes Res 12:770–777

    Article  CAS  PubMed  Google Scholar 

  • Vangipuram SD, Yu M, Tian J et al (2007) Adipogenic human adenovirus-36 reduces leptin expression and secretion and increases glucose uptake by fat cells. Int J Obes 31:87–96

    Article  CAS  Google Scholar 

  • Vivante A, Golan E, Tzur D et al (2012) Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med 172:1644–1650

    Article  PubMed  PubMed Central  Google Scholar 

  • Vizcarra JA, Kirby JD, Kim SK et al (2007) Active immunization against ghrelin decreases weight gain and alters plasma concentrations of growth hormone in growing pigs. Domest Anim Endocrinol 33:176–189

    Article  CAS  PubMed  Google Scholar 

  • Wadden TA, Webb VL, Moran CH et al (2012) Lifestyle modification for obesity: new developments in diet, physical activity, and behavior therapy. Circulation 125:1157–1170

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YC, McPherson K, Marsh T et al (2011) Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378:815–825

    Article  PubMed  Google Scholar 

  • Wilson PW, D’Agostino RB, Sullivan L et al (2002) Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med 162:1867–1872

    Article  PubMed  Google Scholar 

  • Wortley KE, Anderson KD, Garcia K et al (2004) Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci U S A 101:8227–8232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Brown MS, Liang G et al (2008) Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 132:387–396

    Article  CAS  PubMed  Google Scholar 

  • Zigman JM, Nakano Y, Coppari R et al (2005) Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest 115:3564–3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorrilla EP, Iwasaki S, Moss JA et al (2006) Vaccination against weight gain. Proc Natl Acad Sci U S A 103:13226–13231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Mochida Memorial Foundation for Medical and Pharmaceutical Research.

Conflict of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiko Azegami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azegami, T., Itoh, H. (2019). Immunotherapy for Obesity. In: Nakagami, H. (eds) Therapeutic Vaccines as Novel Immunotherapy. Springer, Singapore. https://doi.org/10.1007/978-981-32-9628-2_4

Download citation

Publish with us

Policies and ethics