Skip to main content

Zernike Moment and Mutual Information Based Methods for Multimodal Image Registration

  • Conference paper
  • First Online:
Proceedings of 3rd International Conference on Computer Vision and Image Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1024))

  • 612 Accesses

Abstract

Image registration enables joint operations between images obtained from diverse sources. However, there have been limited advances in the registration of multichannel images. The accuracy of registration is a significant concern for medical applications, among others. Two methods, PCA–ZM and CED–ZM, have been proposed for registration based on Zernike moment and enhanced mutual information. Edge detection by Zernike moment and identification of common features in multichannel images are used as a foundation to improve accuracy over single-channel registrations. Single-channel registration accuracy for MRI and SPECT brain images is found to surpass the methods compared against. PCA–ZM demonstrates good accuracy for MR-MR registration, while CED–ZM has good accuracy for MR-SPECT registration. These measures improve upon accurate registration for images, especially where many modalities are available, such as in medical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arce-Santana, E.R., Campos-Delgado, D.U., Reducindo, I., Mejia-Rodriguez, A.R.: Multimodal image registration based on the expectation-maximisation methodology. IET Image Process. 11(12), 1246–1253 (2017)

    Article  Google Scholar 

  2. Chen, S.J., Shen, H.L., Li, C., Xin, J.H.: Normalized total gradient: a new measure for multispectral image registration. IEEE Trans. Image Process. 27(3), 1297–1310 (2018)

    Article  MathSciNet  Google Scholar 

  3. Iscen, A., Tolias, G., Gosselin, P.H., Jgou, H.: A comparison of dense region detectors for image search and fine-grained classification. IEEE Trans. Image Process. 24(8), 2369–2381 (2015)

    Article  MathSciNet  Google Scholar 

  4. Johnson, K.A., Becker, J.A.: The whole brain atlas. www.med.harvard.edu/aanlib/home.html (1999)

  5. Li, Y., Verma, R.: Multichannel image registration by feature-based information fusion. IEEE Trans. Med. Imaging 30(3), 707–720 (2011)

    Article  Google Scholar 

  6. Luan, H., Qi, F., Xue, Z., Chen, L., Shen, D.: Multimodality image registration by maximization of quantitative-qualitative measure of mutual information. Pattern Recognit. 41(1), 285–298 (2008)

    Article  Google Scholar 

  7. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  8. Nor’aini, A.J., Raveendran, P., Selvanathan, N.: A comparative analysis of zernike moments and principal component analysis as feature extractors for face recognition. In: Ibrahim, F., Osman, N.A.A., Usman, J., Kadri, N.A. (eds.) 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, pp. 37–41. Springer, Berlin, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Image registration by maximization of combined mutual information and gradient information. IEEE Trans. Med. Imaging 19(8), 809–814 (2000)

    Article  Google Scholar 

  10. Pradhan, S., Patra, D.: Enhanced mutual information based medical image registration. IET Image Process. 10(5), 418–427 (2016)

    Article  Google Scholar 

  11. Qu, Y.-D., Cui, C.-S., Chen, S.-B., Li, J.-Q.: A fast subpixel edge detection method using sobelzernike moments operator. Image Vis. Comput. 23(1), 11–17 (2005). http://www.sciencedirect.com/science/article/pii/S0262885604001660

  12. Zhu, F., Ding, M., Zhang, X.: Self-similarity inspired local descriptor for non-rigid multi-modal image registration. Inf. Sci. 372, 16–31 (2016). http://www.sciencedirect.com/science/article/pii/S0020025516305965

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Vishwakarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kashyap, S.K., Jat, D., Bhuyan, M.K., Vishwakarma, A., Gadde, P. (2020). Zernike Moment and Mutual Information Based Methods for Multimodal Image Registration. In: Chaudhuri, B., Nakagawa, M., Khanna, P., Kumar, S. (eds) Proceedings of 3rd International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1024. Springer, Singapore. https://doi.org/10.1007/978-981-32-9291-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9291-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9290-1

  • Online ISBN: 978-981-32-9291-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics