Skip to main content

Sympathetic Nerve Activity, Stress, and Cardiovascular Risk

  • Reference work entry
  • First Online:
Handbook of Psychocardiology

Abstract

Recent discoveries supporting a functional and structural link between the brain and the heart emphasize the importance of understanding the cross talk for cardio- and cerebrovascular health. Stress has been shown to play a crucial role in the generation of cardiovascular diseases and has a major impact on neurodegenerative diseases and mental disorders presumably through activation of the sympathetic branch of the autonomic nervous system. It is well established that overactivity of the sympathetic nervous system plays a central role in the development of cardiovascular disease and constitutes an important risk factor for cardiovascular morbidity and mortality. Further, increasing evidence suggests the overactivity of the sympathetic branch is a common phenomenon linking major cardiac pathologies seen in association with several primarily neurological conditions, such as cerebral infarction and subarachnoid hemorrhage. Modulating brain activity in humans for otherwise treatment resistant disorders has been demonstrated to affect cardiovascular parameters. Direct electrical stimulation of specific midbrain areas in humans for pain relief regulates human cardiovascular reflex control and can evoke panic and anxiety, by modulating the activity of the autonomic nervous system.

This chapter examines the connection between the brain and the heart the autonomic nervous system provides. Evidence of a linking between emotional stresses and cardiovascular risk is explored, more specifically, stress-induced cardiomyopathy and a plausible explanation for the female predisposition of the condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian, E. D., et al. (1932). Discharges in mammalian sympathetic nerves. The Journal of Physiology, 74(2), 115–133.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandler, R., et al. (2000). Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Research Bulletin, 53(1), 95–104.

    Article  PubMed  Google Scholar 

  • Benarroch, E. E. (1993). The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clinic Proceedings, 68(10), 988–1001.

    Article  PubMed  Google Scholar 

  • Dampney, R. A. L., Furlong, T. M., Horiuchi, J., Iigaya, K. (2013). Role of dorsolateral periaqueductal grey in the coordinated regulation of cardiovascular and respiratory function. Autonomic Neuroscience, 175, 17–25.

    Article  PubMed  Google Scholar 

  • Donadio, V., et al. (2002). Interindividual differences in sympathetic and effector responses to arousal in humans. The Journal of Physiology, 544(1), 293–302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Esler, M., Jackman, G., Bobik, A., Kelleher, D., Jennings, G., Leonard, P., Skews, H., & Korner, P. (1979). Determination of norepinephrine apparent release rate and clearance in humans. Life Science, 25, 1461–1470.

    Article  Google Scholar 

  • Esler, M., Jennings, G., Korner, P., Willett, I., Dudley, F., Hasking, G., Anderson, W., & Lambert, G. (1988). Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension, 11, 3–20.

    Article  PubMed  Google Scholar 

  • Esler, M., Jennings, G., Lambert, G., Meredith, I., Horne, M., & Eisenhofer, G. (1990). Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiological Reviews, 70, 963–985.

    PubMed  Google Scholar 

  • García-Villalón, A. L., et al. (1996). Sex differences in the effects of 17β-estradiol on vascular adrenergic responses. European Journal of Pharmacology, 314(3), 339–345.

    Article  PubMed  Google Scholar 

  • Green, A. L., et al. (2005). Deep brain stimulation can regulate arterial blood pressure in awake humans. NeuroReport, 16(16), 1741–1745.

    Article  PubMed  Google Scholar 

  • Kingwell, B. A., Thompson, J. M., Kaye, D. M., McPherson, G. A., Jennings, G. L., & Esler, M. D. (1994). Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation, 90, 234–240.

    Article  PubMed  Google Scholar 

  • Kneale, B. J., et al. (2000). Gender differences in sensitivity to adrenergic agonists of forearm resistance vasculature. Journal of the American College of Cardiology, 36(4), 1233–1238.

    Article  PubMed  Google Scholar 

  • Kop, W. J., et al. (2004). Effects of acute mental stress and exercise on T-wave alternans in patients with implantable cardioverter defibrillators and controls. Circulation, 109(15), 1864–1869.

    Article  PubMed  Google Scholar 

  • Kumar, K., Toth, C., & Nath, R. K. (1997). Deep brain stimulation for intractable pain: a 15 year experience. Neurosurgery, 40, 736–746.

    Article  PubMed  Google Scholar 

  • Lovick, T. A. (2014). “Sex determinants of experimental panic attacks.” Neuroscience & Biobehavioral Reviews, 46, 465–471.

    Google Scholar 

  • Mazzeo, A. T., et al. (2014). Brain–heart crosstalk: The many faces of stress-related cardiomyopathy syndromes in anaesthesia and intensive care. British Journal of Anaesthesia, 112(5), 803–815.

    Article  PubMed  Google Scholar 

  • Nashold, B. S., Wilson, W. P., & Slaughter, D. G. (1969). Sensations evoked by stimulation in the midbrain of man. Journal of Neurosurgery, 30, 14–24.

    Article  PubMed  Google Scholar 

  • Orth-Gomér, K., et al. (2000). Marital stress worsens prognosis in women with coronary heart disease: The Stockholm female coronary risk study. JAMA, 284(23), 3008–3014.

    Article  PubMed  Google Scholar 

  • Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., Sandrone, G., Malfatto, G., Dell’Orto, S., Piccaluga, E., Turiel, M., Baselli, G., Cerutti, S., & Malliani, A. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation Research, 59, 178–193.

    Article  PubMed  Google Scholar 

  • Pereira, E. A. C., et al. (2010). Sustained reduction of hypertension by deep brain stimulation. Journal of Clinical Neuroscience, 17(1), 124–127.

    Article  PubMed  Google Scholar 

  • Pereira, E. A. C., et al. (2013). Elevated gamma band power in humans receiving naloxone suggests dorsal periaqueductal and periventricular gray deep brain stimulation produced analgesia is opioid mediated. Experimental Neurology, 239(0), 248–255.

    Article  PubMed  Google Scholar 

  • Richardson, D. E., & Akil, H. (1977). Pain reduction by electrical brain stimulation in man. Part 1: acute administration in periaqueductal and periventricular sites. Journal of Neurosurgery, 47, 178–183.

    Article  PubMed  Google Scholar 

  • Samuels, M. A. (2007). The brain–heart connection. Circulation, 116(1), 77–84.

    Article  PubMed  Google Scholar 

  • Sverrisdóttir, Y., et al. (2012). Sympathetic nerve activity in stress-induced cardiomyopathy. Clinical Autonomic Research, 22(6), 259–264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sverrisdóttir, Y. B., et al. (2014). Differentiated baroreflex modulation of sympathetic nerve activity during deep brain stimulation in humans. Hypertension, 63(5), 1000–1010.

    Article  PubMed  Google Scholar 

  • Timio, M., et al. (2001). A link between psychosocial factors and blood pressure trend in women. Physiology & Behavior, 73(3), 359–363.

    Article  Google Scholar 

  • Toufexis, D., et al. (2014). Stress and the reproductive axis. Journal of Neuroendocrinology, 26(9), 573–586.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallbo, A. B., et al. (1979). Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiological Reviews, 59(4), 919–957.

    PubMed  Google Scholar 

  • Vongpatanasin, W., et al. (2001). Transdermal estrogen replacement therapy decreases sympathetic activity in postmenopausal women. Circulation, 103(24), 2903–2908.

    Article  PubMed  Google Scholar 

  • Warltier, D. C., et al. (2003). Clinical relevance of the Bezold–Jarisch reflex. Anesthesiology, 98(5), 1250–1260.

    Article  Google Scholar 

  • Wilkinson, D., Thompson, J. M., Lambert, G. W., et al. (1998). Sympathetic activity in patients with panic disorder at rest, under laboratory mental stress, and during panic attacks. Archives of General Psychiatry, 55(6), 511–520.

    Article  PubMed  Google Scholar 

  • Wittstein, I. S., et al. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. New England Journal of Medicine, 352(6), 539–548.

    Article  PubMed  Google Scholar 

  • Yardley, C. P., & Hilton, S. M. (1986). The hypothalamic and brainstem areas from which the cardiovascular and behavioural components of the defence reaction are elicited in the rat. Journal of the Autonomic Nervous System, 15, 227–244.

    Article  PubMed  Google Scholar 

  • Zhou, J. Q., et al. (2010). A big man with a broken heart: Stress-induced cardiomyopathy in a morbidly obese man. Mayo Clinic Proceedings, 85(9), 864–865.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yrsa Bergmann Sverrisdóttir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Sverrisdóttir, Y.B. (2016). Sympathetic Nerve Activity, Stress, and Cardiovascular Risk. In: Alvarenga, M., Byrne, D. (eds) Handbook of Psychocardiology. Springer, Singapore. https://doi.org/10.1007/978-981-287-206-7_37

Download citation

Publish with us

Policies and ethics