Skip to main content

Eleven-Year Cycle of Solar Magnetic Activity: Observations, Theories, and Numerical Model Predictions

  • Chapter
  • First Online:
Solar-Terrestrial Environmental Prediction

Abstract

The record of sunspot observations spans 400 years and shows an 11-year solar activity cycle. How the Sun generates magnetic fields to produce sunspots cyclically is attributed to the magnetohydrodynamic (MHD) dynamo theory, which was initiated in the 1950s as semi-analytical models and is now the subject of supercomputer simulations. The amplitude of 11-year cycles varies from cycle to cycle, and occasionally a drastic reduction in amplitude is observed, for example, the Maunder Minimum in the seventeenth century. The prediction of the amplitude of the forthcoming cycle has been done mostly empirically in the past, but this topic was also studied recently by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babcock, H.W.: The solar magnetograph. Astrophys. J. 118, 387 (1953)

    Article  ADS  Google Scholar 

  • Babcock, H.D.: The sun’s polar magnetic field. Astrophys. J. 130, 364 (1959)

    Article  ADS  Google Scholar 

  • Babcock, H.W.: The topology of the sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572 (1961)

    Article  ADS  Google Scholar 

  • Babcock, H.W, Babcock, H.D.: The Sun’s Magnetic Field, 1952-1954. Astrophys. J. 121, 349 (1955)

    Google Scholar 

  • Bray, R.J., Loughhead, R.E.: Sunspots, The International Astrophysics Series, p. 1. Chapman and Hall, London (1964)

    Google Scholar 

  • Cameron, R., Schussler, M.: The crucial role of surface magnetic fields for the solar dynamo. Science. 347, 1333 (2015)

    Article  ADS  Google Scholar 

  • Cameron, R.H., Jiang, J., Schussler, M.: Solar cycle 25: another moderate cycle? Astrophys. J. Lett. 823, L22 (2016)

    Article  ADS  Google Scholar 

  • Carrington, R.C.: On the distribution of the solar spots in latitude since the beginning of the year 1854; with a map. Monthly Notices R. Astron. Soc. 19, 1 (1858)

    Article  ADS  Google Scholar 

  • Choudhuri, A.R., Schussler, M., Dikpati, M.: The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29 (1995)

    ADS  Google Scholar 

  • Choudhuri, A.R., Chatterjee, P., Jiang, J.: Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98, 131103 (2007)

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Däppen, W., Ajukov, S.V., et al.: The current state of solar modeling. Science. 272, 1286 (1996)

    Article  ADS  Google Scholar 

  • Clette, F., Lefèvre, L.: The new sunspot number: assembling all corrections. Solar Phys. 291, 2629 (2016)

    Article  ADS  Google Scholar 

  • Cowling, M.A.: The magnetic field of sunspots. Monthly Notices R. Astron. Soc. 94, 39 (1933)

    Article  ADS  MATH  Google Scholar 

  • Dikpati, M., Charbonneau, P.: A Babcock-Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508 (1999)

    Article  ADS  Google Scholar 

  • Dikpati, M., de Toma, G., Gilman, P.A., Arge, C.N., White, O.R.: Diagnostics of polar field reversal in solar cycle 23 using a flux transport dynamo model. Astrophys. J. 601, 1136 (2004)

    Article  ADS  Google Scholar 

  • Du, Z., Du, S.: The relationship between the amplitude and descending time of a solar activity cycle. Solar Phys. 238, 431 (2006)

    Article  ADS  Google Scholar 

  • Duhau, S.: An early prediction of maximum sunspot number in solar cycle 24. Solar Phys. 213, 203 (2003)

    Article  ADS  Google Scholar 

  • Featherstone, N.A., Hindman, B.W.: The emergence of solar supergranulation as a natural consequence of rotationally constrained interior convection. Astrophys. J. Lett. 830, L15 (2016)

    Article  ADS  Google Scholar 

  • Ghizaru, M., Charbonneau, P., Smolarkiewicz, P.K.: Magnetic cycles in global large-eddy simulations of solar convection. Astrophys. J. Lett. 715, L133 (2010)

    Article  ADS  Google Scholar 

  • Gilman, P.A.: Nonlinear dynamics of Boussinesq convection in a deep rotating spherical Shell. I. Geophys. Astrophys. Fluid Dyn. 8, 93 (1977)

    Article  ADS  MATH  Google Scholar 

  • Gizon, L., et al.: Meridional flow in the Sun’s convection zone is a single cell in each hemisphere. Science. 368, 1469 (2020)

    Article  ADS  Google Scholar 

  • Goldberg, L.: In: Kuiper, G.P. (ed.) The Sun, p. 3. University of Chicago Press, Chicago IL (1953)

    Google Scholar 

  • Hale, G.E.: On the probable existence of a magnetic field in sun-spots. Astrophys. J. 28, 315 (1908)

    Article  ADS  Google Scholar 

  • Hale, G.E., Nicholson, S.B.: Magnetic Observations of Sunspots 1917–1924. Carnegie Institution of Washington, Washington, DC (1938)

    Google Scholar 

  • Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: The magnetic polarity of sun-spots. Astrophys. J. 49, 153 (1919)

    Article  ADS  Google Scholar 

  • Hanasoge, S.M., Duvall Jr., T.L., Sreenivasan, K.R.: Anomalously weak solar convection. PNAS. 109, 11928 (2012)

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: The solar cycle. Living Rev. Sol. Phys. 12, 4 (2015)

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Rightmire, L.: Variations in the axisymmetric transport of magnetic elements on the sun: 1996-2010. ApJ. 729, 80 (2011)

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Upton, L.: Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J. Geophys. Res. Space Phys. 121, 10–744 (2016)

    Article  Google Scholar 

  • Hotta, H., Kusano, K.: Solar differential rotation reproduced with high-resolution simulation. Nature Astron. 5, 1100 (2021)

    Article  ADS  Google Scholar 

  • Hotta, H., Rempel, M., Yokoyama, T.: Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations. Science. 351, 1427 (2016)

    Article  ADS  MATH  Google Scholar 

  • Iijima, H., Hotta, H., Imada, S., Kusano, K., Shiota, D.: Improvement of solar-cycle prediction: plateau of solar axial dipole moment. Astron. Astrophys. Lett. 602, L2 (2017)

    Article  Google Scholar 

  • Imada, S., Fujiyama, M.: Effect of magnetic field strength on solar differential rotation and meridional circulation. Astrophys. J. 864, L5 (2018)

    Article  ADS  Google Scholar 

  • Jiang, J., Hathaway, D.H., Cameron, R.H., Solanki, S.K., Gizon, L., Upton, L.H.: Magnetic flux transport at the solar surface. Space Sci. Rev. 186, 491 (2014)

    Article  ADS  Google Scholar 

  • Leighton, R.B.: A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1 (1969)

    Article  ADS  Google Scholar 

  • Lord, J.W., Cameron, R.H., Rast, M.P., Rempel, M., Roudier, T.: The role of subsurface flows in solar surface convection: modeling the spectrum of supergranular and larger scale flows. Astrophys. J. 793, 24 (2014)

    Article  ADS  Google Scholar 

  • Maunder, E.W.: Note on the distribution of sun-spots in heliographic latitude, 1874-1902. Monthly Notices R. Astron. Soc. 64, 747 (1904)

    Article  ADS  Google Scholar 

  • Miesch, M.S., Elliott, J.R., Toomre, J., et al.: Three-dimensional spherical simulations of solar convection. I. Differential rotation and pattern evolution achieved with laminar and turbulent states. Astrophys. J. 532, 593 (2000)

    Article  ADS  Google Scholar 

  • Parker, E.N.: Hydromagnetic dynamo models. Astrophys. J. 122, 293 (1955)

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: Predictions of solar cycle 24: how are we doing? Space Weather. 14, 10 (2016)

    Article  ADS  Google Scholar 

  • Quassim, M.S., Attia, A.F., Elminir, H.K.: Forecasting the peak amplitude of the 24th and 25th sunspot cycles and accompanying geomagnetic activity. Solar Phys. 243, 253 (2007)

    Article  ADS  Google Scholar 

  • Sakurai, T.: Helioseismology, dynamo, and magnetic helicity, Progress in Solar/Stellar Physics with Helio- and Asteroseismology (eds. H. Shibahashi, M. Takata, and A. E. Lynas-Gray). Astron. Soc. Pacific Conf. Ser. 462, 247 (2012)

    ADS  Google Scholar 

  • Schou, J., Antia, H.M., Basu, S., et al.: Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson doppler imager. Astrophys. J. 505, 390 (1998)

    Article  ADS  Google Scholar 

  • Schwabe, H.: Sonnenbeobachtungen im Jahre 1843. Astron. Nachr. 21, 234 (1844)

    Article  ADS  Google Scholar 

  • Sekii, T.: Helioseismology to Probe the Interior of the Sun. In: Sakurai, T., et al. (eds.) Series of Contemporary Astronomy, Vol.10 “The Sun”, p. 45. Nihon Hyoronsha, Tokyo (2009)

    Google Scholar 

  • Sheeley Jr., N.R., Nash, A.G., Wang, Y.-M.: The origin of rigidly rotating magnetic field patterns on the sun. Astrophys. J. 319, 481 (1987)

    Article  ADS  Google Scholar 

  • Spörer, G.: Beobachtungen der Sonnenflecken zu Anclam. Publ. Astron. Ges. 13, 1 (1874)

    Google Scholar 

  • Svalgaard, L., Cliver, E.W., Kamide, Y.: Correction of errors in scale values for magnetic elements for Helsinki. GRL. 32, L01104 (2005)

    ADS  Google Scholar 

  • Upton, L., Hathaway, D.H.: Predicting the sun’s polar magnetic fields with a surface flux transport model. Astrophys. J. 780, 5 (2014)

    Article  ADS  Google Scholar 

  • Warnecke, J., Rheinhardt, M., Tuomisto, S., et al.: Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars. Astron. Astrophys. 609, A51 (2018)

    Article  Google Scholar 

  • Wolf, R.: Sonnenflecken-Beobachtungen in der zweiten Hälfte des Jahres 1850. Mitt. Naturforsch. Ges. Bern. 207, 89 (1851)

    Google Scholar 

  • Wolf, R.: Quelques Résultats Déduits de la Statistique Solaire. Mem. Soc. Spettrosc. Ital. 10, 61 (1881)

    Google Scholar 

  • Yoshimura, H.: Solar-cycle dynamo wave propagation. Astrophys. J. 201, 740 (1975)

    Article  ADS  Google Scholar 

  • Zhao, J., Bogart, R.S., Kosovichev, A.G., Duvall Jr., T.L., Hartlep, T.: Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the sun. Astrophys. J. 774, L29 (2013)

    Article  ADS  Google Scholar 

  • Zirin, H.: Astrophysics of the Sun, p. 307. Cambridge University Press, Cambridge (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sakurai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakurai, T., Hotta, H., Imada, S. (2023). Eleven-Year Cycle of Solar Magnetic Activity: Observations, Theories, and Numerical Model Predictions. In: Kusano, K. (eds) Solar-Terrestrial Environmental Prediction. Springer, Singapore. https://doi.org/10.1007/978-981-19-7765-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7765-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7764-0

  • Online ISBN: 978-981-19-7765-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics