Skip to main content

Anti-inflammatory-Dependent Anti-aging Strategies

  • Chapter
  • First Online:
Emerging Anti-Aging Strategies
  • 612 Accesses

Abstract

Aging and death remain a great mystery of biological science. Many processes associated with aging have been described. In general, the aging process is associated with inflammation. Inflammation is the cellular and vascular response of tissues to infection and tissue damage. Under normal conditions, it provides tissue healing with a controlled humoral and cellular response and prevents the development of infection. The presence of chronic, low-level inflammation without significant infection was termed “inflammaging.” The use of methods aimed at regulating or preventing inflammaging will prevent, at least reduce or delay the effects of both the prevention of symptoms that can occur with aging and the emergence of diseases that can be seen. The use of treatments and methods to regulate inflammation in the early period when signs of aging begin to appear will have a positive effect on aging by activating the body’s compensatory mechanism. Aging is strongly affected by metabolism. Research on drugs such as polyphenolic compounds, statins, and aspirin will increasingly continue, as they can delay the aging process, prolong lifespan, and reduce age-related degeneration and associated morbidity and mortality by targeting mTOR, NF-κβ, inflammatory cytokines, and related signal transduction pathways. Research on polyphenolic compounds, anti-aging pharmacologic agents will increasingly continue, as they can delay the aging process, prolong life, and reduce age-related degeneration and associated morbidity and mortality by targeting mTOR, NF-κb, inflammatory cytokines, and related signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfikri FN, Pujiarti R, Wibisono MG, Hardiyanto EB (2020) Yield, quality, and antioxidant activity of clove (Syzygium aromaticum L.) bud oil at the different phenological stages in young and mature trees. Scientifica (Cairo) 2020:9701701

    Google Scholar 

  • Ali AM, Kunugi H (2021) Propolis, bee honey, and their components protect against coronavirus disease 2019 (COVID-19): a review of in silico, in vitro, and clinical studies. Molecules 26(5):1232

    Article  CAS  Google Scholar 

  • Bajaj V, Gadi N, Spihlman AP, Wu SC, Choi CH, Moulton VR (2021) Aging, immunity, and COVID-19: how age influences the host immune response to coronavirus infections? Front Physiol 11:571416

    Article  Google Scholar 

  • Bartleson JM, Radenkovic D, Covarrubias AJ, Furman D, Winer DA, Verdin E (2021) SARS-CoV-2, COVID-19 and the ageing immune system. Nat Aging 1(9):769–782

    Article  Google Scholar 

  • Batiha GE, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK (2020) Syzygium aromaticum L. (Myrtaceae): traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules 10(2):202

    Article  Google Scholar 

  • Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342

    Article  CAS  Google Scholar 

  • Blagosklonny MV (2017) From rapalogs to anti-aging formula. Oncotarget 8(22):35492–35507

    Article  Google Scholar 

  • Brinkmann V, Romeo M, Larigot L et al (2022) Aryl hydrocarbon receptor-dependent and -independent pathways mediate curcumin anti-aging effects. Antioxidants (Basel) 11(4):613

    Article  CAS  Google Scholar 

  • Brown MK, Evans JL, Luo Y (2006) Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol Biochem Behav 85(3):620–628

    Article  CAS  Google Scholar 

  • Calder PC, Bosco N, Bourdet-Sicard R, Capuron L, Delzenne N, Doré J, Franceschi C, Lehtinen MJ, Recker T, Salvioli S, Visioli F (2017) Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res Rev 40:95–119

    Article  CAS  Google Scholar 

  • Campa M, Baron E (2018) Anti-aging effects of select botanicals: scientific evidence and current trends. Cosmetics 5:54. https://doi.org/10.3390/cosmetics5030054

    Article  CAS  Google Scholar 

  • Campbell M, Jialal I (2022) Physiology, endocrine hormones [updated 2021 Oct 1]. In: StatPearls. StatPearls Publishing, Treasure Island, FL. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538498/

  • Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E (2019) From discoveries in ageing research to therapeutics for healthy ageing. Nature 571(7764):183–192

    Article  CAS  Google Scholar 

  • Chaikul N, Sripisut T, Chanpirom S, Ditthawutthikul N (2020) Anti-skin aging activities of green tea (Camelliasinensis (L) Kuntze) in B16F10 melanoma cells and human skin fibroblasts. Eur J Integr Med 40:101212. https://doi.org/10.1016/j.eujim.2020.101212

    Article  Google Scholar 

  • Chandra RK (2004) Impact of nutritional status and nutrient supplements on immune responses and incidence of infection in older individuals. Ageing Res Rev 3(1):91–104

    Article  CAS  Google Scholar 

  • Chen QQ (2009) Nordihydroguaiaretic acid analogues: their chemical synthesis and biological activities. Curr Top Med Chem 9:1636–1659

    Article  CAS  Google Scholar 

  • Chen S, Zhou N, Zhang Z, Li W, Zhu W (2015) Resveratrol induces cell apoptosis in adipocytes via AMPK activation. Biochem Biophys Res Commun 457(4):608–613

    Article  CAS  Google Scholar 

  • Chung HY, Kim DH, Lee EK et al (2019) Redefining chronic inflammation in aging and age-related diseases: proposal of the senoinflammation concept. Aging Dis 10(2):367–382

    Article  Google Scholar 

  • Crafa A, Calogero AE, Cannarella R et al (2021) The burden of hormonal disorders: a worldwide overview with a particular look in Italy. Front Endocrinol (Lausanne) 12:694325

    Article  Google Scholar 

  • Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV (2020) Remodeling of the immune response with aging: immunosenescence and its potential impact on COVID-19 immune response. Front Immunol 11:1748

    Article  CAS  Google Scholar 

  • Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F (2021) Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 22(2):75–95

    Article  Google Scholar 

  • Ding AJ, Zheng SQ, Huang XB et al (2017) Current perspective in the discovery of anti-aging agents from natural products. Nat Prod Bioprospect 7(5):335–404

    Article  CAS  Google Scholar 

  • Domi E, Hoxha M, Kolovani E, Tricarico D, Zappacosta B (2022) The importance of nutraceuticals in COVID-19: what’s the role of resveratrol? Molecules 27(8):2376

    Article  CAS  Google Scholar 

  • Donma MM, Donma O (2020) The effects of allium sativum on immunity within the scope of COVID-19 infection. Med Hypotheses 144:109934

    Article  CAS  Google Scholar 

  • Eghbali S, Askari SF, Avan R, Sahebkar A (2021) Therapeutic effects of Punica granatum (pomegranate): an updated review of clinical trials. J Nutr Metab 2021:5297162

    Article  Google Scholar 

  • Esmaeili F, Zahmatkeshan M, Yousefpoor Y et al (2022) Anti-inflammatory and anti-nociceptive effects of Cinnamon and Clove essential oils nanogels: an in vivo study. BMC Complement Med Ther 22:143. https://doi.org/10.1186/s12906-022-03619-9

    Article  CAS  Google Scholar 

  • Farr SA, Price TO, Banks WA, Ercal N, Morley JE (2012) Effect of alpha-lipoic acid on memory, oxidation, and lifespan in SAMP8 mice. J Alzheimers Dis 32(2):447–455

    Article  CAS  Google Scholar 

  • Germolec DR, Shipkowski KA, Frawley RP, Evans E (1803) Markers of inflammation. Methods Mol Biol 2018:57–79

    Google Scholar 

  • Ghidoli M, Colombo F, Sangiorgio S et al (2021) Food containing bioactive flavonoids and other phenolic or sulfur phytochemicals with antiviral effect: can we design a promising diet against COVID-19? Front Nutr 8:661331

    Article  Google Scholar 

  • Ha M-J, You S-H, Ha M-J, You S-H (2016) Bioactive characteristics of extracts of Opuntia humifusa fruit as functional cosmetic ingredients. Asian J Beauty Cosmetol 14:463–472

    Article  Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20(4):145–147

    Article  CAS  Google Scholar 

  • Harrison DE, Strong R, Allison DB (2014) Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13:273–282

    Article  CAS  Google Scholar 

  • Hong S, Cha KH, Park JH et al (2022) Cinnamic acid suppresses bone loss via induction of osteoblast differentiation with alteration of gut microbiota. J Nutr Biochem 101:108900

    Article  CAS  Google Scholar 

  • Horiguchi H, Loftus TJ, Hawkins RB, Raymond SL, Stortz JA, Hollen MK et al (2018) Innate immunity in the persistent inflammation, immunosuppression, and catabolism syndrome and its implications for therapy. Front Immunol 9:595

    Article  Google Scholar 

  • Hwang E, Lin P, Ngo HTT, Yi TH (2018) Clove attenuates UVB-induced photodamage and repairs skin barrier function in hairless mice. Food Funct 9(9):4936–4947

    Article  CAS  Google Scholar 

  • Institute of Medicine (US) Food Forum (2010) Providing healthy and safe foods as we age: workshop summary. National Academies Press (US), Washington, DC

    Google Scholar 

  • Jahnen-Dechent W, Ketteler M (2012) Magnesium basics. Clin Kidney J 5(Suppl 1):i3–i14

    Article  CAS  Google Scholar 

  • Jo HE, Son SY, Lee CH (2022) Comparison of metabolome and functional properties of three Korean cucumber cultivars. Front Plant Sci 13:882120

    Article  Google Scholar 

  • Kang CH, Rhie SJ, Kim YC (2018) Antioxidant and skin anti-aging effects of marigold methanol extract. Toxicol Res 34(1):31–39

    Article  Google Scholar 

  • Kaur G, Jabbar Z, Athar M, Alam MS (2006) Punica granatum (pomegranate) flower extract possesses potent antioxidant activity and abrogates Fe-NTA induced hepatotoxicity in mice. Food Chem Toxicol 44(7):984–993

    Article  CAS  Google Scholar 

  • Kennedy BK, Berger SL, Brunet A et al (2014) Geroscience: linking aging to chronic disease. Cell 159(4):709–713

    Article  CAS  Google Scholar 

  • Khubber S, Hashemifesharaki R, Mohammadi M, Gharibzahedi SMT (2020) Garlic (Allium sativum L.): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19. Nutr J 19(1):124

    Article  CAS  Google Scholar 

  • Kim HJ, Braun HJ, Dragoo JL (2014) The effect of resveratrol on normal and osteoarthritic chondrocyte metabolism. Bone Joint Res 3(3):51–59

    Article  CAS  Google Scholar 

  • Kim K, Kim J, Kim H, Sung GY (2021a) Effect of α-lipoic acid on the development of human skin equivalents using a pumpless skin-on-a-chip model. Int J Mol Sci 22(4):2160

    Article  CAS  Google Scholar 

  • Kim BH, Joo Y, Kim MS, Choe HK, Tong Q, Kwon O (2021b) Effects of intermittent fasting on the circulating levels and circadian rhythms of hormones. Endocrinol Metab (Seoul) 36(4):745–756

    Article  CAS  Google Scholar 

  • Ko K, Dadmohammadi Y, Abbaspourrad A (2021) Nutritional and bioactive components of pomegranate waste used in food and cosmetic applications: a review. Foods 10(3):657

    Article  CAS  Google Scholar 

  • Kolb H, Kempf K, Röhling M, Lenzen-Schulte M, Schloot NC, Martin S (2021) Ketone bodies: from enemy to friend and guardian angel. BMC Med 19(1):313

    Article  CAS  Google Scholar 

  • Lee HC, Chang CM, Chi CW (2010) Somatic mutations of mitochondrial DNA in aging and cancer progression. Ageing Res Rev 9(Suppl 1):S47–S58

    Article  CAS  Google Scholar 

  • Lee H, Choi W, Ro H, Kim G, Lee H (2021) Skin antiaging effects of the fermented outer layers of leaf skin of Aloe barbadensis Miller associated with the enhancement of mitochondrial activities of UVb-irradiated human skin fibroblasts. Appl Sci 11(12):5660

    Article  CAS  Google Scholar 

  • Liu JK (2022) Antiaging agents: safe interventions to slow aging and healthy life span extension. Nat Prod Bioprospect 12(1):18

    Article  Google Scholar 

  • Liu C, Zhang R, Sun C et al (2015) Resveratrol prevents cadmium activation of Erk1/2 and JNK pathways from neuronal cell death via protein phosphatases 2A and 5. J Neurochem 135(3):466–478

    Article  CAS  Google Scholar 

  • Liu L, Guo P, Wang P, Zheng S, Qu Z, Liu N (2021) The review of anti-aging mechanism of polyphenols on Caenorhabditis elegans. Front Bioeng Biotechnol 9:635768

    Article  Google Scholar 

  • Madrigal-Perez LA, Nava GM, González-Hernández JC, Ramos-Gomez M (2015) Resveratrol increases glycolytic flux in Saccharomyces cerevisiae via a SNF1-dependet mechanism. J Bioenerg Biomembr 47(4):331–336

    Article  CAS  Google Scholar 

  • Maggini S, Wintergerst ES, Beveridge S, Hornig DH (2007) Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr 98(Suppl 1):S29–S35

    Article  CAS  Google Scholar 

  • Mitina M, Young S, Zhavoronkov A (2020) Psychological aging, depression, and well-being [published online ahead of print, 2020 Sep 18]. Aging (Albany NY) 12(18):18765–18777

    Article  CAS  Google Scholar 

  • Mobasheri A, Shakibaei M (2013) Osteogenic effects of resveratrol in vitro: potential for the prevention and treatment of osteoporosis. Ann N Y Acad Sci 1290:59–66

    Article  CAS  Google Scholar 

  • Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV (2020) Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Front Immunol 11:570122

    Article  CAS  Google Scholar 

  • Mueller AL, McNamara MS, Sinclair DA (2020) Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 12(10):9959–9981

    Article  CAS  Google Scholar 

  • Najman K, Sadowska A, Hallmann E (2020) Influence of thermal processing on the bioactive, antioxidant, and physicochemical properties of conventional and organic agriculture black garlic (Allium sativum L.). Appl Sci 10(23):8638

    Article  CAS  Google Scholar 

  • Narasimhan SD, Yen K, Tissenbaum HA (2009) Converging pathways in lifespan regulation. Curr Biol 19(15):R657–R666

    Article  CAS  Google Scholar 

  • Newman JC, Verdin E (2017) β-Hydroxybutyrate: a signaling metabolite. Annu Rev Nutr 37:51–76

    Article  CAS  Google Scholar 

  • Okoro NO, Odiba AS, Osadebe PO et al (2021) Bioactive phytochemicals with anti-aging and lifespan extending potentials in Caenorhabditis elegans. Molecules 26(23):7323

    Article  CAS  Google Scholar 

  • Ospelt C, Gay S (2005) Somatic mutations in mitochondria: the chicken or the egg? Arthritis Res Ther 7(5):179–180

    Article  CAS  Google Scholar 

  • Park SJ, Ahmad F, Philp A et al (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148(3):421–433

    Article  CAS  Google Scholar 

  • Pengkumsri N, Kaewdoo K, Leeprechanon W, Sivamaruthi BS (2019) Influence of extraction methods on total phenolic content and antioxidant properties of some of the commonly used plants in Thailand. Pak J Biol Sci 22(3):117–126

    Article  CAS  Google Scholar 

  • Péron G, Lemaître JF, Ronget V, Tidière M, Gaillard JM (2019) Variation in actuarial senescence does not reflect life span variation across mammals. PLoS Biol 17(9):e3000432

    Article  Google Scholar 

  • Piskovatska V, Strilbytska O, Koliada A, Vaiserman A, Lushchak O (2019) Health benefits of anti-aging drugs. Subcell Biochem 91:339–392

    Article  CAS  Google Scholar 

  • Regitz C, Fitzenberger E, Mahn FL, Dußling LM, Wenzel U (2016) Resveratrol reduces amyloid-beta (Aβ1–42)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur J Nutr 55(2):741–747

    Article  CAS  Google Scholar 

  • Sagagurski M, Cady G, Miller RA (2017) Anti-aging drugs reduce hypothalamic inflammation in a sex-specific manner. Aging Cell 16:652–660

    Article  Google Scholar 

  • Santoro A, Martucci M, Conte M, Capri M, Franceschi C, Salvioli S (2020) Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Res Rev 64:101142

    Article  CAS  Google Scholar 

  • Shaposhnikov MV, Guvatova ZG, Zemskaya NV et al (2022) Molecular mechanisms of exceptional lifespan increase of Drosophila melanogaster with different genotypes after combinations of pro-longevity interventions. Commun Biol 5(1):566

    Article  CAS  Google Scholar 

  • Solano F (2020) Photoprotection and skin pigmentation: melanin-related molecules and some other new agents obtained from natural sources. Molecules 25(7):1537

    Article  CAS  Google Scholar 

  • Song K, Shin Y, Jung M et al (2021) Chromosome-scale genome assemblies of two Korean cucumber inbred lines. Front Genet 12:733188

    Article  Google Scholar 

  • Strous GJ, Almeida ADS, Putters J et al (2020) Growth hormone receptor regulation in cancer and chronic diseases. Front Endocrinol (Lausanne) 11:597573

    Article  Google Scholar 

  • Tesfaye A (2021) Revealing the therapeutic uses of garlic (Allium sativum) and its potential for drug discovery. ScientificWorldJournal 2021:8817288

    Article  Google Scholar 

  • Toth P, Tarantini S, Springo Z et al (2015) Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell 14(3):400–408

    Article  CAS  Google Scholar 

  • Trubitsyn AG (2020) The mechanism of programmed aging: the way to create a real remedy for senescence. Curr Aging Sci 13(1):31–41

    Article  Google Scholar 

  • Tseng PC, Hou SM, Chen RJ et al (2011) Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res 26(10):2552–2563

    Article  CAS  Google Scholar 

  • Tung BT, Rodriguez-Bies E, Thanh HN et al (2015) Organ and tissue-dependent effect of resveratrol and exercise on antioxidant defenses of old mice. Aging Clin Exp Res 27(6):775–783

    Article  Google Scholar 

  • van der Geest KS, Lorencetti PG, Abdulahad WH et al (2016) Aging-dependent decline of IL-10 producing B cells coincides with production of antinuclear antibodies but not rheumatoid factors. Exp Gerontol 75:24–29

    Article  Google Scholar 

  • Vicidomini C, Roviello V, Roviello GN (2021) Molecular basis of the therapeutical potential of clove (Syzygium aromaticum L.) and clues to its anti-COVID-19 utility. Molecules 26(7):1880

    Article  CAS  Google Scholar 

  • Walsh NP (2019) Nutrition and athlete immune health: new perspectives on an old paradigm. Sports Med 49(Suppl 2):153–168

    Article  Google Scholar 

  • Wang C, Wheeler CT, Alberico T et al (2013) The effect of resveratrol on lifespan depends on both gender and dietary nutrient composition in Drosophila melanogaster. Age (Dordr) 35(1):69–81

    Article  CAS  Google Scholar 

  • Wink L, Miller RA, Garcia GG (2022) Rapamycin, acarbose and 17α-estradiol share common mechanisms regulating the MAPK pathways involved in intracellular signaling and inflammation. Immun Ageing 19(1):8

    Article  CAS  Google Scholar 

  • Wong LR, Zheng J, Wilhelmsen K et al (2022) Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature 605(7908):146–151

    Article  CAS  Google Scholar 

  • Yan WW, Chen GH, Wang F et al (2015) Long-term acarbose administration alleviating the impairment of spatial learning and memory in theSAMP8 mice was associated with alleviated reduction of insulin system and acetylated H4K8. Brain Res 1603:22–31

    Article  CAS  Google Scholar 

  • Yang N, Sen P (2018) The senescent cell epigenome. Aging (Albany NY) 10(11):3590–3609

    Article  CAS  Google Scholar 

  • Zhu Y, Liu X, Ding X, Wang F, Geng X (2019) Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 20(1):1–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dumur, S., Uzun, H. (2023). Anti-inflammatory-Dependent Anti-aging Strategies. In: Rizvi, S.I. (eds) Emerging Anti-Aging Strategies. Springer, Singapore. https://doi.org/10.1007/978-981-19-7443-4_7

Download citation

Publish with us

Policies and ethics