Skip to main content

Aquaporins in Cardiovascular System

  • Chapter
  • First Online:
Aquaporins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1398))

  • 952 Accesses

Abstract

Recent studies have shown that aquaporins (AQPs) are involved in the regulation of cardiovascular function and the development of related diseases, especially in cerebral ischemia, congestive heart failure, hypertension, and angiogenesis. Therefore, further studies are needed to elucidate the mechanism accounting for the association between AQPs and vascular function-related diseases, which may lead to novel approaches to the prevention and treatment of those diseases. Here we will discuss the expression and physiological roles of AQPs in vascular tissues and summarize recent progress in the research on AQPs related cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitchell J, Kirkby N, Ahmetaj-Shala B, Armstrong P, Crescente M, Ferreira P, Lopes Pires M, Vaja R, Warner T (2021) Cyclooxygenases and the cardiovascular system. Pharmacol Ther 217:107624

    Article  CAS  PubMed  Google Scholar 

  2. Sun H, Wu Z, Cao L, Zhu M, Nie X, Huang D, Sun M, Bian J (2020) Role of nitroxyl (HNO) in cardiovascular system: from biochemistry to pharmacology. Pharmacol Res 159:104961

    Article  CAS  PubMed  Google Scholar 

  3. Wallert M, Ziegler M, Wang X, Maluenda A, Xu X, Yap M, Witt R, Giles C, Kluge S, Hortmann M, Zhang J, Meikle P, Lorkowski S, Peter K (2019) Α-tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biol 26:101292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ishibashi K, Morishita Y, Tanaka Y (2017) The evolutionary aspects of aquaporin family. Adv Exp Med Biol 969:35–50

    Article  CAS  PubMed  Google Scholar 

  5. Deshmukh R, Nguyen H, Belanger R (2017) Aquaporins: dynamic role and regulation. Front Plant Sci 8:1420

    Article  PubMed  PubMed Central  Google Scholar 

  6. Salman MM, Kitchen P, Yool AJ, Bill RM (2022) Recent breakthroughs and future directions in drugging aquaporins. Trends Pharmacol Sci 43(1):30–42

    Article  CAS  PubMed  Google Scholar 

  7. Buffoli B, Foglio E, Borsani E, Exley C, Rezzani R, Rodella L (2013) Silicic acid in drinking water prevents age-related alterations in the endothelium-dependent vascular relaxation modulating eNOS and AQP1 expression in experimental mice: an immunohistochemical study. Acta Histochem 115(5):418–424

    Article  CAS  PubMed  Google Scholar 

  8. Herrera M, Garvin J (2007) Novel role of AQP-1 in NO-dependent vasorelaxation. Am J Physiol Renal Physiol 292(5):F1443–F1451

    Article  CAS  PubMed  Google Scholar 

  9. Verkerk A, Lodder E, Wilders R (2019) Aquaporin channels in the heart-physiology and pathophysiology. Int J Mol Sci 20(8):2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verkman A (2006) Aquaporins in endothelia. Kidney Int 69(7):1120–1123

    Article  CAS  PubMed  Google Scholar 

  11. Ni J, Verbavatz J, Rippe A, Boisdé I, Moulin P, Rippe B, Verkman A, Devuyst O (2006) Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int 69(9):1518–1525

    Article  CAS  PubMed  Google Scholar 

  12. Montiel V, Bella R, Michel LYM, Esfahani H, De Mulder D, Robinson EL, Deglasse JP, Tiburcy M, Chow PH, Jonas JC, Gilon P, Steinhorn B, Michel T, Beauloye C, Bertrand L, Farah C, Dei Zotti F, Debaix H, Bouzin C, Brusa D, Horman S, Vanoverschelde JL, Bergmann O, Gilis D, Rooman M, Ghigo A, Geninatti-Crich S, Yool A, Zimmermann WH, Roderick HL, Devuyst O, Balligand JL (2020) Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Sci Transl Med 12:564

    Article  Google Scholar 

  13. Wakayama Y, Hirako S, Ohtaki H, Arata S, Jimi T, Honda K (2021) Histopathological and aquaporin7 mRNA expression analyzes in the skeletal and cardiac muscles of obese db/db mice. J Vet Med Sci 83(7):1155–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Endeward V, Musa-Aziz R, Cooper G, Chen L, Pelletier M, Virkki L, Supuran C, King L, Boron W, Gros G (2006) Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J 20(12):1974–1981

    Article  CAS  PubMed  Google Scholar 

  15. Musa-Aziz R, Chen L, Pelletier M, Boron W (2009) Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci U S A 106(13):5406–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Geyer R, Musa-Aziz R, Qin X, Boron W (2013) Relative CO(2)/NH(3) selectivities of mammalian aquaporins 0-9. Am J Physiol Cell Physiol 304(10):985–994

    Article  Google Scholar 

  17. Devuyst O, Rippe B (2014) Water transport across the peritoneal membrane. Kidney Int 85(4):750–758

    Article  CAS  PubMed  Google Scholar 

  18. Huebert R, Vasdev M, Shergill U, Das A, Huang B, Charlton M, LaRusso N, Shah V (2010) Aquaporin-1 facilitates angiogenic invasion in the pathological neovasculature that accompanies cirrhosis. Hepatology 52(1):238–248

    Article  CAS  PubMed  Google Scholar 

  19. Huebert R, Jagavelu K, Hendrickson H, Vasdev M, Arab J, Splinter P, Trussoni C, Larusso N, Shah V (2011) Aquaporin-1 promotes angiogenesis, fibrosis, and portal hypertension through mechanisms dependent on osmotically sensitive microRNAs. Am J Pathol 179(4):1851–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu J, Saleh M, Kirabo A, Itani H, Montaniel K, Xiao L, Chen W, Mernaugh R, Cai H, Bernstein K, Goronzy J, Weyand C, Curci J, Barbaro N, Moreno H, Davies S, Roberts L, Madhur M, Harrison D (2016) Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 126(4):1607

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huang O, Seet L, Ho H, Chu S, Narayanaswamy A, Perera S, Husain R, Aung T, Wong T (2021) Altered iris aquaporin expression and aqueous humor osmolality in glaucoma. Invest Ophthalmol Vis Sci 62(2):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo T, Guo L, Fan Y, Fang L, Wei J, Tan Y, Chen Y, Fan X (2019) Aqueous humor levels of TGFβ2 and SFRP1 in different types of glaucoma. BMC Ophthalmol 19(1):170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xun W, Liu Y, Qing G, Xun X, Dongqing Z, Haixiang W (2009) Aquaporin 1 expression in retinal neovascularization in a mouse model of retinopathy of prematurity. Prep Biochem Biotechnol 39(2):208–217

    Article  PubMed  Google Scholar 

  24. Hua Y, Ying X, Qian Y, Liu H, Lan Y, Xie A, Zhu X (2019) Physiological and pathological impact of AQP1 knockout in mice. Biosci Rep 39(5):2303

    Article  Google Scholar 

  25. Saadoun S, Papadopoulos M, Hara-Chikuma M, Verkman A (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434(7034):786–792

    Article  CAS  PubMed  Google Scholar 

  26. Huo Z, Lomora M, Kym U, Palivan C, Holland-Cunz S, Gros S (2021) AQP1 is up-regulated by hypoxia and leads to increased cell water permeability, motility, and migration in neuroblastoma. Front Cell Dev Biol 9:605272

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xiang Y, Ma B, Li T, Gao J, Yu H, Li X (2004) Acetazolamide inhibits aquaporin-1 protein expression and angiogenesis. Acta Pharmacol Sin 25(6):812–816

    CAS  PubMed  Google Scholar 

  28. Chou B, Hiromatsu K, Okano S, Ishii K, Duan X, Sakai T, Murata S, Tanaka K, Himeno K (2012) Antiangiogenic tumor therapy by DNA vaccine inducing aquaporin-1-specific CTL based on ubiquitin-proteasome system in mice. J Immunol 189(4):1618–1626

    Article  CAS  PubMed  Google Scholar 

  29. Hong Y, Chen Z, Li N, Zhang M (2020) Prognostic value of serum aquaporin-1, aquaporin-3 and galectin-3 for young patients with colon cancer. Ann Clin Biochem 57(6):404–411

    Article  CAS  PubMed  Google Scholar 

  30. Morita K, Matsumoto N, Saito K, Hamabe-Horiike T, Mizuguchi K, Shinmyo Y, Kawasaki H (2021) BMP signaling alters aquaporin-4 expression in the mouse cerebral cortex. Sci Rep 11(1):10540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kalita A, Das M, Baro M, Das B (2021) Exploring the role of Aquaporins (AQPs) in LPS induced systemic inflammation and the ameliorative effect of Garcinia in male Wistar rat. Inflammopharmacology 29(3):801–823

    Article  CAS  PubMed  Google Scholar 

  32. Kitchen P, Salman M, Halsey A, Clarke-Bland C, MacDonald J, Ishida H, Vogel H, Almutiri S, Logan A, Kreida S, Al-Jubair T, Winkel Missel J, Gourdon P, Törnroth-Horsefield S, Conner M, Ahmed Z, Conner A, Bill R (2020) Targeting aquaporin-4 subcellular localization to treat central nervous system edema. Cell 181(4):784–799.e719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kimball E, Schaub J, Quillen S, Keuthan C, Pease M, Korneva A, Quigley H (2021) The role of aquaporin-4 in optic nerve head astrocytes in experimental glaucoma. PLoS ONE 16(2):e0244123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zannetti A, Benga G, Brunetti A, Napolitano F, Avallone L, Pelagalli A (2020) Role of aquaporins in the physiological functions of mesenchymal stem cells. Cell 9(12):2678

    Article  CAS  Google Scholar 

  35. Ohene Y, Harrison I, Nahavandi P, Ismail O, Bird E, Ottersen O, Nagelhus E, Thomas D, Lythgoe M, Wells J (2019) Non-invasive MRI of brain clearance pathways using multiple echo time arterial spin labelling: an aquaporin-4 study. NeuroImage 188:515–523

    Article  PubMed  Google Scholar 

  36. Rao S, Skauli N, Jovanovic N, Katoozi S, Frigeri A, Froehner S, Adams M, Ottersen O, Amiry-Moghaddam M (2021) Orchestrating aquaporin-4 and connexin-43 expression in brain: Differential roles of α1- and β1-syntrophin. Biomembranes 1863(8):183616

    Article  CAS  PubMed  Google Scholar 

  37. Benfenati V, Ferroni S (2010) Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels. Neuroscience 168(4):926–940

    Article  CAS  PubMed  Google Scholar 

  38. Rose R, Kemper B, Schwab A, Schlatter E, Edemir B (2021) Unexpected localization of AQP3 and AQP4 induced by migration of primary cultured IMCD cells. Sci Rep 11(1):11930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu D, Zador Z, Yao J, Fazlollahi F, Manley G (2021) Aquaporin-4 reduces post-traumatic seizure susceptibility by promoting astrocytic glial scar formation in mice. J Neurotrauma 38(8):1193–1201

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee J, Beatty G (2021) Serum amyloid a proteins and their impact on metastasis and immune biology in cancer. Cancer 13(13):3179

    Article  CAS  Google Scholar 

  41. Hibuse T, Maeda N, Nakatsuji H, Tochino Y, Fujita K, Kihara S, Funahashi T, Shimomura I (2009) The heart requires glycerol as an energy substrate through aquaporin 7, a glycerol facilitator. Cardiovasc Res 83(1):34–41

    Article  CAS  PubMed  Google Scholar 

  42. Fujii M, Ota K, Bessho R (2020) Cardioprotective effect of hyperkalemic cardioplegia in an aquaporin 7-deficient murine heart. Gen Thorac Cardiovasc Surg 68(6):578–584

    Article  PubMed  Google Scholar 

  43. Jaeken J, Goubau C, Buyse G, Goemans N, Levtchenko E (2013) Another cause of hyperglyceroluria: aquaporin 7 gene mutation. J Pediatr Gastroenterol Nutr 57(3):e19

    Article  PubMed  Google Scholar 

  44. Mourelatou R, Kostopoulou E, Rojas-Gil A, Kehagias I, Linos D, Kalfarentzos F, Spiliotis B (2019) Decreased adipocyte glucose transporter 4 (GLUT4) and aquaglyceroporin-7 (AQP7) in adults with morbid obesity: possible early markers of metabolic dysfunction. Hormones 18(3):297–306

    Article  PubMed  Google Scholar 

  45. Badaut J (2010) Aquaglyceroporin 9 in brain pathologies. Neuroscience 168(4):1047–1057

    Article  CAS  PubMed  Google Scholar 

  46. Badaut J, Fukuda A, Jullienne A, Petry K (2014) Aquaporin and brain diseases. Biochim Biophys Acta 1840(5):1554–1565

    Article  CAS  PubMed  Google Scholar 

  47. Dasdelen D, Mogulkoc R, Baltaci A (2020) Aquaporins and roles in brain health and brain injury. Mini Rev Med Chem 20(6):498–512

    Article  CAS  PubMed  Google Scholar 

  48. Mori S, Kurimoto T, Miki A, Maeda H, Kusuhara S, Nakamura M (2020) AQP9 gene deletion enhances retinal ganglion cell (RGC) death and dysfunction induced by optic nerve crush: evidence that aquaporin 9 acts as an astrocyte-to-neuron lactate shuttle in concert with monocarboxylate transporters to support RGC function and survival. Mol Neurobiol 57(11):4530–4548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Santis S, Serino G, Fiorentino M, Galleggiante V, Gena P, Verna G, Liso M, Massaro M, Lan J, Troisi J, Cataldo I, Bertamino A, Pinto A, Campiglia P, Santino A, Giannelli G, Fasano A, Calamita G, Chieppa M (2019) Corrigendum: aquaporin-9 contributes to the maturation process and inflammatory cytokine secretion of murine dendritic cells. Front Immunol 10:216

    Article  PubMed  PubMed Central  Google Scholar 

  50. Clément T, Rodriguez-Grande B, Badaut J (2020) Aquaporins in brain edema. J Neurosci Res 98(1):9–18

    Article  PubMed  Google Scholar 

  51. Liu X, Xu Q, Li Z, Xiong B (2020) Integrated analysis identifies AQP9 correlates with immune infiltration and acts as a prognosticator in multiple cancers. Sci Rep 10(1):20795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Azad A, Raihan T, Ahmed J, Hakim A, Emon T, Chowdhury P (2021) Human aquaporins: functional diversity and potential roles in infectious and non-infectious diseases. Front Genet 12:654865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ribeiro MC, Hirt L, Bogousslavsky J, Regli L, Badaut J (2006) Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res 83(7):1231–1240

    Article  PubMed  Google Scholar 

  54. Hirt L, Ternon B, Price M, Mastour N, Brunet J, Badaut J (2009) Protective role of early aquaporin 4 induction against postischemic edema formation. J Cereb Blood Flow Metab 29(2):423–433

    Article  CAS  PubMed  Google Scholar 

  55. Yan W, Zhao X, Chen H, Zhong D, Jin J, Qin Q, Zhang H, Ma S, Li G (2016) β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia. Neuroscience 326:141–157

    Article  CAS  PubMed  Google Scholar 

  56. Berland S, Toft-Bertelsen TL, Aukrust I, Byska J, Vaudel M, Bindoff LA, MacAulay N, Houge G (2018) A de novo Ser111Thr variant in aquaporin-4 in a patient with intellectual disability, transient signs of brain ischemia, transient cardiac hypertrophy, and progressive gait disturbance. Cold Spring Harb Mol Case Stud 4(1):2303

    Article  Google Scholar 

  57. Hirt L, Fukuda A, Ambadipudi K, Rashid F, Binder D, Verkman A, Ashwal S, Obenaus A, Badaut J (2017) Improved long-term outcome after transient cerebral ischemia in aquaporin-4 knockout mice. J Cereb Blood Flow Metab 37(1):277–290

    Article  CAS  PubMed  Google Scholar 

  58. Akdemir G, Ratelade J, Asavapanumas N, Verkman A (2014) Neuroprotective effect of aquaporin-4 deficiency in a mouse model of severe global cerebral ischemia produced by transient 4-vessel occlusion. Neurosci Lett 574:70–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Katada R, Akdemir G, Asavapanumas N, Ratelade J, Zhang H, Verkman A (2014) Greatly improved survival and neuroprotection in aquaporin-4-knockout mice following global cerebral ischemia. FASEB J 28(2):705–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yao X, Derugin N, Manley G, Verkman A (2015) Reduced brain edema and infarct volume in aquaporin-4 deficient mice after transient focal cerebral ischemia. Neurosci Lett 584:368–372

    Article  CAS  PubMed  Google Scholar 

  61. Yang M, Gao F, Liu H, Yu W, Sun S (2009) Temporal changes in expression of aquaporin-3, -4, -5 and -8 in rat brains after permanent focal cerebral ischemia. Brain Res 1290:121–132

    Article  CAS  PubMed  Google Scholar 

  62. Oliva A, Kang Y, Truettner J, Sanchez-Molano J, Furones C, Yool A, Atkins C (2011) Fluid-percussion brain injury induces changes in aquaporin channel expression. Neuroscience 180:272–279

    Article  CAS  PubMed  Google Scholar 

  63. Goswami N, Di Mise A, Centrone M, Russo A, Ranieri M, Reichmuth J, Brix B, De Santo N, Sasso F, Tamma G, Valenti G (2021) Seasonal rhythms of vasopressin release and aquaporin-2 excretion assure appropriate water conservation in humans. J Transl Med 19(1):194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li Y, Wei Y, Zheng F, Guan Y, Zhang X (2017) Prostaglandin E2 in the regulation of water transport in renal collecting ducts. Int J Mol Sci 18(12):2539

    Article  PubMed  PubMed Central  Google Scholar 

  65. Arnspang E, Login F, Koffman J, Sengupta P, Nejsum L (2016) AQP2 plasma membrane diffusion is altered by the degree of AQP2-S256 phosphorylation. Int J Mol Sci 17(11):1804

    Article  PubMed  PubMed Central  Google Scholar 

  66. Knepper M (2012) Systems biology in physiology: the vasopressin signaling network in kidney. Cell Physiol 303(11):1115–1124

    Article  Google Scholar 

  67. Zheng H, Liu X, Katsurada K, Patel K (2019) Renal denervation improves sodium excretion in rats with chronic heart failure: effects on expression of renal ENaC and AQP2. Am J Physiol Heart Circ Physiol 317(5):958–968

    Article  Google Scholar 

  68. Sonoda H, Oshikawa-Hori S, Ikeda M (2019) An early decrease in release of aquaporin-2 in urinary extracellular vesicles after cisplatin treatment in rats. Cell 8(2):139

    Article  CAS  Google Scholar 

  69. Cheung P, Bouley R, Brown D (2020) Targeting the trafficking of kidney water channels for therapeutic benefit. Annu Rev Pharmacol Toxicol 60:175–194

    Article  CAS  PubMed  Google Scholar 

  70. Veeraveedu P, Watanabe K, Ma M, Palaniyandi S, Yamaguchi K, Suzuki K, Kodama M, Aizawa Y (2007) Effects of nonpeptide vasopressin V2 antagonist tolvaptan in rats with heart failure. Biochem Pharmacol 74(10):1466–1475

    Article  CAS  PubMed  Google Scholar 

  71. Imamura T, Kinugawa K (2016) Urine aquaporin-2: a promising marker of response to the arginine vasopressin type-2 antagonist, tolvaptan in patients with congestive heart failure. Int J Mol Sci 17(1):105

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chung S, Kim S, Son M, Kim M, Koh E, Shin S, Ko S, Kim H (2019) Empagliflozin contributes to polyuria via regulation of sodium transporters and water channels in diabetic rat kidneys. Front Physiol 10:271

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lee J, Kim S, Kim J, Jeong M, Oh Y, Choi K (2006) Increased expression of renal aquaporin water channels in spontaneously hypertensive rats. Kidney Blood Press Res 29(1):18–23

    Article  CAS  PubMed  Google Scholar 

  74. Graffe C, Bech J, Lauridsen T, Vase H, Pedersen E (2012) Abnormal increase in urinary aquaporin-2 excretion in response to hypertonic saline in essential hypertension. BMC Nephrol 13:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu M, Han Q, Yang J (2019) Trimethylamine-n-oxide (TMAO) increased aquaporin-2 expression in spontaneously hypertensive rats. Clin Exp Hypertens 41(4):312–322

    Article  CAS  PubMed  Google Scholar 

  76. Cil O, Esteva-Font C, Tas S, Su T, Lee S, Anderson M, Ertunc M, Verkman A (2015) Salt-sparing diuretic action of a water-soluble urea analog inhibitor of urea transporters UT-A and UT-B in rats. Kidney Int 88(2):311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Klein J, Murrell B, Tucker S, Kim Y, Sands J (2006) Urea transporter UT-A1 and aquaporin-2 proteins decrease in response to angiotensin II or norepinephrine-induced acute hypertension. Ren Physiol 291(5):952–959

    Article  Google Scholar 

  78. Tomassoni D, Bramanti V, Amenta F (2010) Expression of aquaporins 1 and 4 in the brain of spontaneously hypertensive rats. Brain Res 1325:155–163

    Article  CAS  PubMed  Google Scholar 

  79. Kone B (2006) NO break-ins at water gate. Hypertension 48(1):29–30

    Article  CAS  PubMed  Google Scholar 

  80. Morelle J, Sow A, Vertommen D, Jamar F, Rippe B, Devuyst O (2014) Quantification of osmotic water transport in vivo using fluorescent albumin. Ren Physiol 307(8):981–989

    Article  Google Scholar 

  81. Liu M, Liu Q, Pei Y, Gong M, Cui X, Pan J, Zhang Y, Liu Y, Liu Y, Yuan X, Zhou H, Chen Y, Sun J, Wang L, Zhang X, Wang R, Li S, Cheng J, Ding Y, Ma T, Yuan Y (2019) AQP-1 gene knockout attenuates hypoxic pulmonary hypertension of mice. Arterioscler Thromb Vasc Biol 39(1):48–62

    Article  CAS  PubMed  Google Scholar 

  82. Yun X, Jiang H, Lai N, Wang J, Shimoda LA (2017) Aquaporin 1-mediated changes in pulmonary arterial smooth muscle cell migration and proliferation involve β-catenin. Am J Physiol Lung Cell Mol Physiol 313(5):889–898

    Article  CAS  Google Scholar 

  83. Toussaint J, Raval CB, Nguyen T, Fadaifard H, Joshi S, Wolberg G, Quarfordt S, Jan KM, Rumschitzki DS (2017) Chronic hypertension increases aortic endothelial hydraulic conductivity by upregulating endothelial aquaporin-1 expression. Am J Physiol Heart Circ Physiol 313(5):1063–1073

    Article  CAS  Google Scholar 

  84. Clapp C, Martínez de la Escalera G (2006) Aquaporin-1: a novel promoter of tumor angiogenesis. Trends Endocrinol Metab 17(1):1–2

    Article  CAS  PubMed  Google Scholar 

  85. Warth A, Kröger S, Wolburg H (2004) Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol 107(4):311–318

    Article  CAS  PubMed  Google Scholar 

  86. Simone L, Pisani F, Mola M, De Bellis M, Merla G, Micale L, Frigeri A, Vescovi A, Svelto M, Nicchia G (2019) AQP4 aggregation state is a determinant for glioma cell fate. Cancer Res 79(9):2182–2194

    Article  CAS  PubMed  Google Scholar 

  87. Dua R, Devi B, Yasha T (2010) Increased expression of aquaporin-4 and its correlation with contrast enhancement and perilesional edema in brain tumors. Br J Neurosurg 24(4):454–459

    Article  PubMed  Google Scholar 

  88. Oishi M, Munesue S, Harashima A, Nakada M, Yamamoto Y, Hayashi Y (2020) Aquaporin 1 elicits cell motility and coordinates vascular bed formation by downregulating thrombospondin type-1 domain-containing 7A in glioblastoma. Cancer Med 9(11):3904–3917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Imrédi E, Liszkay G, Kenessey I, Plotár V, Gödény M, Tóth B, Fedorcsák I, Tímár J (2020) Aquaporin-1 protein expression of the primary tumor may predict cerebral progression of cutaneous melanoma. Pathol Oncol Res 26(1):405–410

    Article  PubMed  Google Scholar 

  90. Papadopoulos M, Saadoun S, Verkman A (2008) Aquaporins and cell migration. Pflueg Arch Eur J Physiol 456(4):693–700

    Article  CAS  Google Scholar 

  91. Monzani E, Shtil A, La Porta C (2007) The water channels, new druggable targets to combat cancer cell survival, invasiveness and metastasis. Curr Drug Targets 8(10):1132–1137

    Article  CAS  PubMed  Google Scholar 

  92. Tomita Y, Dorward H, Yool A, Smith E, Townsend A, Price T, Hardingham J (2017) Role of aquaporin 1 signalling in cancer development and progression. Int J Mol Sci 18(2):299

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research in the author’s laboratory is supported by grants from the National Natural Science Foundation of China (No. 92168120, 81974506, 81673486 and 81373405), and the Beijing Natural Science Foundation (No. Z200019 and 7172119) to Lu Tie, and grants from the National Natural Science Foundation of China (No. 81874318, 82073878 and 81473235) to Xuejun Li.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuejun Li or Lu Tie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fan, L., Wu, P., Li, X., Tie, L. (2023). Aquaporins in Cardiovascular System. In: Yang, B. (eds) Aquaporins. Advances in Experimental Medicine and Biology, vol 1398. Springer, Singapore. https://doi.org/10.1007/978-981-19-7415-1_8

Download citation

Publish with us

Policies and ethics