Skip to main content

Aquaporins in Reproductive System

  • Chapter
  • First Online:
Aquaporins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1398))

Abstract

AQP0-12, a total of 13 aquaporins are expressed in the mammalian reproductive system. These aquaporins mediate the transport of water and small solutes across biofilms for maintaining reproductive tract water balance and germ cell water homeostasis. These aquaporins play important roles in the regulation of sperm and egg cell production, maturation, and fertilization processes. Impaired AQP function may lead to diminished male and female fertility. This review focuses on the distribution, function, and regulation of AQPs throughout the male and female reproductive organs and tracts. Their correlation with reproductive success, revealing recent advances in the physiological and pathophysiological roles of aquaporins in the reproductive system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hermo L, Krzeczunowicz D, Ruz R (2004) Cell specificity of aquaporins 0, 3, and 10 expressed in the testis, efferent ducts, and epididymis of adult rats. J Androl 25(4):494–505

    Article  CAS  PubMed  Google Scholar 

  2. Lu DY et al (2008) Expression and immunohistochemical localization of aquaporin-1 in male reproductive organs of the mouse. Anat Histol Embryol 37(1):1–8

    Article  PubMed  Google Scholar 

  3. Bernardino RL et al (2018) Estrogen modulates glycerol permeability in sertoli cells through downregulation of aquaporin-9. Cell 7(10):153

    Article  CAS  Google Scholar 

  4. Mobasheri A et al (2007) Distribution of the AQP4 water channel in normal human tissues: protein and tissue microarrays reveal expression in several new anatomical locations, including the prostate gland and seminal vesicles. Channels (Austin) 1(1):29–38

    Article  PubMed  Google Scholar 

  5. Jesus TT et al (2014) Aquaporin-4 as a molecular partner of cystic fibrosis transmembrane conductance regulator in rat Sertoli cells. Biochem Biophys Res Commun 446(4):1017–1021

    Article  CAS  PubMed  Google Scholar 

  6. Skowronski MT, Kwon TH, Nielsen S (2009) Immunolocalization of aquaporin 1, 5, and 9 in the female pig reproductive system. J Histochem Cytochem 57(1):61–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Calamita G et al (2001) Possible involvement of aquaporin-7 and -8 in rat testis development and spermatogenesis. Biochem Biophys Res Commun 288(3):619–625

    Article  CAS  PubMed  Google Scholar 

  8. Elkjaer ML et al (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol Renal Physiol 281(6):F1047–F1057

    Article  CAS  PubMed  Google Scholar 

  9. Badran HH, Hermo LS (2002) Expression and regulation of aquaporins 1, 8, and 9 in the testis, efferent ducts, and epididymis of adult rats and during postnatal development. J Androl 23(3):358–373

    Article  CAS  PubMed  Google Scholar 

  10. Yeung CH et al (2010) Aquaporins in the human testis and spermatozoa - identification, involvement in sperm volume regulation and clinical relevance. Int J Androl 33(4):629–641

    Article  CAS  PubMed  Google Scholar 

  11. Arena S et al (2011) Aquaporin-9 immunohistochemistry in varicocele testes as a consequence of hypoxia in the sperm production site. Andrologia 43(1):34–37

    Article  CAS  PubMed  Google Scholar 

  12. Yeung CH, Cooper TG (2010) Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids. Reproduction 139(1):209–216

    Article  CAS  PubMed  Google Scholar 

  13. Nicotina PA et al (2004) Immunohistology of aquaporin-1 and stem cell factor-receptor in human undescended testes. Pediatr Surg Int 20(4):271–275

    Article  PubMed  Google Scholar 

  14. Fisher JS et al (1999) Effect of neonatal exposure to estrogenic compounds on development of the excurrent ducts of the rat testis through puberty to adulthood. Environ Health Perspect 107(5):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kageyama Y et al (2001) Expression of aquaporins 7 and 8 in the developing rat testis. Andrologia 33(3):165–169

    Article  CAS  PubMed  Google Scholar 

  16. Sohara E et al (2007) Morphologic and functional analysis of sperm and testes in aquaporin 7 knockout mice. Fertil Steril 87(3):671–676

    Article  CAS  PubMed  Google Scholar 

  17. Tsukaguchi H et al (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 273(38):24737–24743

    Article  CAS  PubMed  Google Scholar 

  18. Nihei K et al (2001) Immunolocalization of aquaporin-9 in rat hepatocytes and Leydig cells. Arch Histol Cytol 64(1):81–88

    Article  CAS  PubMed  Google Scholar 

  19. Yeung CH, Barfield JP, Cooper TG (2005) Chloride channels in physiological volume regulation of human spermatozoa. Biol Reprod 73(5):1057–1063

    Article  CAS  PubMed  Google Scholar 

  20. Yeung CH, Barfield JP, Cooper TG (2005) The role of anion channels and Ca2+ in addition to K+ channels in the physiological volume regulation of murine spermatozoa. Mol Reprod Dev 71(3):368–379

    Article  CAS  PubMed  Google Scholar 

  21. Yeung CH et al (2009) Aquaporin isoforms involved in physiological volume regulation of murine spermatozoa. Biol Reprod 80(2):350–357

    Article  CAS  PubMed  Google Scholar 

  22. Chen Q et al (2011) Aquaporin3 is a sperm water channel essential for postcopulatory sperm osmoadaptation and migration. Cell Res 21(6):922–933

    Article  CAS  PubMed  Google Scholar 

  23. Ribeiro JC et al (1867) (2021) Aquaporins and (in)fertility: more than just water transport. Biochim Biophys Acta Mol basis Dis 3:166039

    Google Scholar 

  24. Prieto-Martinez N et al (2017) Aquaporins in boar spermatozoa. Part II: detection and localisation of aquaglyceroporin 3. Reprod Fertil Dev 29(4):703–711

    Article  CAS  PubMed  Google Scholar 

  25. Saito K et al (2004) Localization of aquaporin-7 in human testis and ejaculated sperm: possible involvement in maintenance of sperm quality. J Urol 172(5 Pt 1):2073–2076

    Article  CAS  PubMed  Google Scholar 

  26. Yeung CH (2010) Aquaporins in spermatozoa and testicular germ cells: identification and potential role. Asian J Androl 12(4):490–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laforenza U et al (2016) Aquaporin-mediated water and hydrogen peroxide transport is involved in Normal human spermatozoa functioning. Int J Mol Sci 18(1):66

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pellavio G et al (2020) HPV infection affects human sperm functionality by inhibition of aquaporin-8. Cell 9(5):1241

    Article  CAS  Google Scholar 

  29. Chen Q, Duan EK (2011) Aquaporins in sperm osmoadaptation: an emerging role for volume regulation. Acta Pharmacol Sin 32(6):721–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cooper TG, Yeung CH (2003) Acquisition of volume regulatory response of sperm upon maturation in the epididymis and the role of the cytoplasmic droplet. Microsc Res Tech 61(1):28–38

    Article  PubMed  Google Scholar 

  31. Duan D et al (1997) Molecular identification of a volume-regulated chloride channel. Nature 390(6658):417–421

    Article  CAS  PubMed  Google Scholar 

  32. Alyasin A, Momeni HR, Mahdieh M (2020) Aquaporin3 expression and the potential role of aquaporins in motility and mitochondrial membrane potential in human spermatozoa. Andrologia 52(6):e13588

    Article  CAS  PubMed  Google Scholar 

  33. Moretti E et al (2012) Immunolocalization of aquaporin 7 in human sperm and its relationship with semen parameters. Syst Biol Reprod Med 58(3):129–135

    Article  CAS  PubMed  Google Scholar 

  34. Suzuki-Toyota F, Ishibashi K, Yuasa S (1999) Immunohistochemical localization of a water channel, aquaporin 7 (AQP7), in the rat testis. Cell Tissue Res 295(2):279–285

    Article  CAS  PubMed  Google Scholar 

  35. Yang B et al (2005) Phenotype analysis of aquaporin-8 null mice. Am J Physiol Cell Physiol 288(5):C1161–C1170

    Article  CAS  PubMed  Google Scholar 

  36. Medrano-Fernandez I et al (2016) Stress regulates aquaporin-8 permeability to impact cell growth and survival. Antioxid Redox Signal 24(18):1031–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shannonhouse JL et al (2014) Aquaporin-11 control of testicular fertility markers in Syrian hamsters. Mol Cell Endocrinol 391(1–2):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bestetti S et al (2020) Human aquaporin-11 guarantees efficient transport of H2O2 across the endoplasmic reticulum membrane. Redox Biol 28:101326

    Article  CAS  PubMed  Google Scholar 

  39. Zhou Q et al (2001) Estrogen action and male fertility: roles of the sodium/hydrogen exchanger-3 and fluid reabsorption in reproductive tract function. Proc Natl Acad Sci U S A 98(24):14132–14137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown D et al (1993) Localization of the CHIP28 water channel in reabsorptive segments of the rat male reproductive tract. Eur J Cell Biol 61(2):264–273

    CAS  PubMed  Google Scholar 

  41. Fisher JS et al (1998) Immunoexpression of aquaporin-1 in the efferent ducts of the rat and marmoset monkey during development, its modulation by estrogens, and its possible role in fluid resorption. Endocrinology 139(9):3935–3945

    Article  CAS  PubMed  Google Scholar 

  42. Domeniconi RF et al (2008) Immunolocalization of aquaporins 1, 2 and 7 in rete testis, efferent ducts, epididymis and vas deferens of adult dog. Cell Tissue Res 332(2):329–335

    Article  CAS  PubMed  Google Scholar 

  43. Pastor-Soler N et al (2001) Aquaporin 9 expression along the male reproductive tract. Biol Reprod 65(2):384–393

    Article  CAS  PubMed  Google Scholar 

  44. Cooper TG, Brooks DE (1981) Entry of glycerol into the rat epididymis and its utilization by epididymal spermatozoa. J Reprod Fertil 61(1):163–169

    Article  CAS  PubMed  Google Scholar 

  45. Wellejus A et al (2008) Expression of aquaporin 9 in rat liver and efferent ducts of the male reproductive system after neonatal diethylstilbestrol exposure. J Histochem Cytochem 56(5):425–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ruz R et al (2006) Expression of aquaporins in the efferent ductules, sperm counts, and sperm motility in estrogen receptor-alpha deficient mice fed lab chow versus casein. Mol Reprod Dev 73(2):226–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Da Silva N et al (2006) Segmental and cellular expression of aquaporins in the male excurrent duct. Biochim Biophys Acta 1758(8):1025–1033

    Article  PubMed  Google Scholar 

  48. Oliveira CA et al (2005) Aquaporin-1 and -9 are differentially regulated by oestrogen in the efferent ductule epithelium and initial segment of the epididymis. Biol Cell 97(6):385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Da Silva N et al (2006) Postnatal expression of aquaporins in epithelial cells of the rat epididymis. Biol Reprod 74(2):427–438

    Article  PubMed  Google Scholar 

  50. Hermo L, Smith CE (2011) Thirsty business: cell, region, and membrane specificity of aquaporins in the testis, efferent ducts, and epididymis and factors regulating their expression. J Androl 32(6):565–575

    Article  CAS  PubMed  Google Scholar 

  51. Hermo L et al (2008) Membrane domain specificity in the spatial distribution of aquaporins 5, 7, 9, and 11 in efferent ducts and epididymis of rats. J Histochem Cytochem 56(12):1121–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pastor-Soler NM et al (2010) Aquaporin 9 expression in the developing rat epididymis is modulated by steroid hormones. Reproduction 139(3):613–621

    Article  CAS  PubMed  Google Scholar 

  53. Gong XD et al (2002) Indazole inhibition of cystic fibrosis transmembrane conductance regulator Cl(−) channels in rat epididymal epithelial cells. Biol Reprod 67(6):1888–1896

    Article  CAS  PubMed  Google Scholar 

  54. Cheung KH et al (2003) Synergistic effects of cystic fibrosis transmembrane conductance regulator and aquaporin-9 in the rat epididymis. Biol Reprod 68(5):1505–1510

    Article  CAS  PubMed  Google Scholar 

  55. Amobi N, Guillebaud J, Smith IC (2010) Contractile actions of L-type Ca2+ agonists in human vas deferens and effects of structurally different Ca2+ antagonists. Eur J Pharmacol 627(1–3):285–294

    Article  CAS  PubMed  Google Scholar 

  56. Stevens AL et al (2000) Aquaporin 2 is a vasopressin-independent, constitutive apical membrane protein in rat vas deferens. Am J Physiol Cell Physiol 278(4):C791–C802

    Article  CAS  PubMed  Google Scholar 

  57. Andonian S, Hermo L (1999) Principal cells of the vas deferens are involved in water transport and steroid synthesis in the adult rat. J Androl 20(1):158–176

    Article  CAS  PubMed  Google Scholar 

  58. Zhu J et al (2015) Effects of estrogen deprivation on expression of aquaporins in rat vagina. Menopause 22(8):893–898

    Article  PubMed  Google Scholar 

  59. Gannon BJ et al (2000) Aquaporin-1 expression in visceral smooth muscle cells of female rat reproductive tract. J Smooth Muscle Res 36(5):155–167

    Article  CAS  PubMed  Google Scholar 

  60. Park K et al (2008) Expression of aquaporin water channels in rat vagina: potential role in vaginal lubrication. J Sex Med 5(1):77–82

    Article  CAS  PubMed  Google Scholar 

  61. Kim SO et al (2011) Expression of aquaporin water channels in the vagina in premenopausal women. J Sex Med 8(7):1925–1930

    Article  CAS  PubMed  Google Scholar 

  62. Kim SO et al (2009) Effect of estrogen deprivation on the expression of aquaporins and nitric oxide synthases in rat vagina. J Sex Med 6(6):1579–1586

    Article  CAS  PubMed  Google Scholar 

  63. Ludmir J, Sehdev HM (2000) Anatomy and physiology of the uterine cervix. Clin Obstet Gynecol 43(3):433–439

    Article  CAS  PubMed  Google Scholar 

  64. Huang HF et al (2006) Function of aquaporins in female and male reproductive systems. Hum Reprod Update 12(6):785–795

    Article  CAS  PubMed  Google Scholar 

  65. Anderson J et al (2006) Utilization of different aquaporin water channels in the mouse cervix during pregnancy and parturition and in models of preterm and delayed cervical ripening. Endocrinology 147(1):130–140

    Article  CAS  PubMed  Google Scholar 

  66. Shi YH et al (2012) Significance and expression of aquaporin 1, 3, 8 in cervical carcinoma in Xinjiang Uygur women of China. Asian Pac J Cancer Prev 13(5):1971–1975

    Article  PubMed  Google Scholar 

  67. Soh YM et al (2012) Relaxin regulates hyaluronan synthesis and aquaporins in the cervix of late pregnant mice. Endocrinology 153(12):6054–6064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. de Wilde J et al (2008) Gene expression profiling to identify markers associated with deregulated hTERT in HPV-transformed keratinocytes and cervical cancer. Int J Cancer 122(4):877–888

    Article  PubMed  Google Scholar 

  69. Li X, Yu H, Koide SS (1994) The water channel gene in human uterus. Biochem Mol Biol Int 32(2):371–377

    CAS  PubMed  Google Scholar 

  70. Jablonski EM et al (2003) Estrogen regulation of aquaporins in the mouse uterus: potential roles in uterine water movement. Biol Reprod 69(5):1481–1487

    Article  CAS  PubMed  Google Scholar 

  71. Richard C et al (2003) Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology 144(4):1533–1541

    Article  CAS  PubMed  Google Scholar 

  72. Lindsay LA, Murphy CR (2004) Redistribution of aquaporins in uterine epithelial cells at the time of implantation in the rat. Acta Histochem 106(4):299–307

    Article  CAS  PubMed  Google Scholar 

  73. Pan H et al (2008) Expression of aquaporin-1 in normal, hyperplasic, and carcinomatous endometria. Int J Gynaecol Obstet 101(3):239–244

    Article  CAS  PubMed  Google Scholar 

  74. Aralla M et al (2009) A collaboration of aquaporins handles water transport in relation to the estrous cycle in the bitch uterus. Theriogenology 72(3):310–321

    Article  CAS  PubMed  Google Scholar 

  75. Skowronski MT (2010) Distribution and quantitative changes in amounts of aquaporin 1, 5 and 9 in the pig uterus during the estrous cycle and early pregnancy. Reprod Biol Endocrinol 8:109

    Article  PubMed  PubMed Central  Google Scholar 

  76. He RH et al (2006) Aquaporin-2 expression in human endometrium correlates with serum ovarian steroid hormones. Life Sci 79(5):423–429

    Article  CAS  PubMed  Google Scholar 

  77. Peng H et al (2011) Aquaporin 7 expression in postimplantation mouse uteri: a potential role for glycerol transport in uterine decidualization. Fertil Steril 95(4):1514-7 e1-3

    Article  PubMed  Google Scholar 

  78. Lindsay LA, Murphy CR (2007) Aquaporins are upregulated in glandular epithelium at the time of implantation in the rat. J Mol Histol 38(1):87–95

    Article  CAS  PubMed  Google Scholar 

  79. Jiang XX et al (2010) Immunohistochemical detection of aquaporin expression in eutopic and ectopic endometria from women with endometriomas. Fertil Steril 94(4):1229–1234

    Article  CAS  PubMed  Google Scholar 

  80. Zou LB et al (2011) Identification of estrogen response element in the aquaporin-2 gene that mediates estrogen-induced cell migration and invasion in human endometrial carcinoma. J Clin Endocrinol Metab 96(9):E1399–E1408

    Article  CAS  PubMed  Google Scholar 

  81. Hihnala S et al (2006) Expression of SLC26A3, CFTR and NHE3 in the human male reproductive tract: role in male subfertility caused by congenital chloride diarrhoea. Mol Hum Reprod 12(2):107–111

    Article  CAS  PubMed  Google Scholar 

  82. Feng C et al (2008) Decreased expression of endometrial vessel AQP1 and endometrial epithelium AQP2 related to anovulatory uterine bleeding in premenopausal women. Menopause 15(4 Pt 1):648–654

    Article  PubMed  Google Scholar 

  83. Mobasheri A, Wray S, Marples D (2005) Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol 36(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  84. de Oliveira V et al (2020) Uterine aquaporin expression is dynamically regulated by estradiol and progesterone and ovarian stimulation disrupts embryo implantation without affecting luminal closure. Mol Hum Reprod 26(3):154–166

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sun XL et al (2009) Aquaporin-4 deficiency induces subfertility in female mice. Fertil Steril 92(5):1736–1743

    Article  PubMed  Google Scholar 

  86. Kobayashi M et al (2006) Chromatin immunoprecipitation-mediated target identification proved aquaporin 5 is regulated directly by estrogen in the uterus. Genes Cells 11(10):1133–1143

    Article  CAS  PubMed  Google Scholar 

  87. Leese HJ et al (2001) Formation of fallopian tubal fluid: role of a neglected epithelium. Reproduction 121(3):339–346

    Article  CAS  PubMed  Google Scholar 

  88. Skowronski MT, Skowronska A, Nielsen S (2011) Fluctuation of aquaporin 1, 5, and 9 expression in the pig oviduct during the estrous cycle and early pregnancy. J Histochem Cytochem 59(4):419–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mobasheri A et al (2005) Heterogeneous expression of the aquaporin 1 (AQP1) water channel in tumors of the prostate, breast, ovary, colon and lung: a study using high density multiple human tumor tissue microarrays. Int J Oncol 26(5):1149–1158

    CAS  PubMed  Google Scholar 

  90. Branes MC et al (2005) Regulation of the immunoexpression of aquaporin 9 by ovarian hormones in the rat oviductal epithelium. Am J Physiol Cell Physiol 288(5):C1048–C1057

    Article  CAS  PubMed  Google Scholar 

  91. Nah WH et al (2017) Changes in aquaporin 5 in the non-ciliated cells of mouse oviduct according to sexual maturation and oestrous cycle. Reprod Fertil Dev 29(2):336–344

    Article  CAS  PubMed  Google Scholar 

  92. Ji YF et al (2013) Reduced expression of aquaporin 9 in tubal ectopic pregnancy. J Mol Histol 44(2):167–173

    Article  CAS  PubMed  Google Scholar 

  93. Jeyendran RS et al (1985) Effect of glycerol and cryopreservation on oocyte penetration by human spermatozoa. Andrologia 17(3):241–248

    Article  CAS  PubMed  Google Scholar 

  94. Wawrzkiewicz-Jalowiecka A et al (2017) The role of aquaporins in polycystic ovary syndrome - a way towards a novel drug target in PCOS. Med Hypotheses 102:23–27

    Article  CAS  PubMed  Google Scholar 

  95. Lee HJ et al (2016) Expressions of aquaporin family in human luteinized granulosa cells and their correlations with IVF outcomes. Hum Reprod 31(4):822–831

    Article  CAS  PubMed  Google Scholar 

  96. Thoroddsen A et al (2011) The water permeability channels aquaporins 1-4 are differentially expressed in granulosa and theca cells of the preovulatory follicle during precise stages of human ovulation. J Clin Endocrinol Metab 96(4):1021–1028

    Article  CAS  PubMed  Google Scholar 

  97. Sales AD et al (2013) Structure, function, and localization of aquaporins: their possible implications on gamete cryopreservation. Genet Mol Res 12(4):6718–6732

    Article  CAS  PubMed  Google Scholar 

  98. Paz MP et al (2018) Effect of aquaporin 3 knockdown by RNA interference on antrum formation in sheep secondary follicles cultured in vitro. Zygote 26(5):350–358

    Article  CAS  PubMed  Google Scholar 

  99. Jo JW et al (2011) Effect of maturation on the expression of aquaporin 3 in mouse oocyte. Zygote 19(1):9–14

    Article  CAS  PubMed  Google Scholar 

  100. Ma J et al (2016) Expression of AQP6 and AQP8 in epithelial ovarian tumor. J Mol Histol 47(2):129–134

    Article  CAS  PubMed  Google Scholar 

  101. McConnell NA et al (2002) Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. Endocrinology 143(8):2905–2912

    Article  CAS  PubMed  Google Scholar 

  102. Su W et al (2010) Increased female fertility in aquaporin 8-deficient mice. IUBMB Life 62(11):852–857

    Article  CAS  PubMed  Google Scholar 

  103. Su W et al (2013) Occurrence of multi-oocyte follicles in aquaporin 8-deficient mice. Reprod Biol Endocrinol 11:88

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wang D et al (2018) Increased formation of follicular antrum in aquaporin-8-deficient mice is due to defective proliferation and migration, and not steroidogenesis of granulosa cells. Front Physiol 9:1193

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sales AD et al (2015) Steady-state level of messenger RNA and immunolocalization of aquaporins 3, 7, and 9 during in vitro growth of ovine preantral follicles. Theriogenology 84(1):1–10

    Article  CAS  PubMed  Google Scholar 

  106. Ford P et al (2000) Water permeability in rat oocytes at different maturity stages: aquaporin-9 expression. J Membr Biol 176(2):151–158

    Article  CAS  PubMed  Google Scholar 

  107. Xiong Y et al (2013) Expression of aquaporins in human embryos and potential role of AQP3 and AQP7 in preimplantation mouse embryo development. Cell Physiol Biochem 31(4–5):649–658

    Article  CAS  PubMed  Google Scholar 

  108. Brundl J et al (2018) Expression, localisation and potential significance of aquaporins in benign and malignant human prostate tissue. BMC Urol 18(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sha XY et al (2011) Pregnant phenotype in aquaporin 8-deficient mice. Acta Pharmacol Sin 32(6):840–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Prieto-Martinez N et al (2017) Relationship of aquaporins 3 (AQP3), 7 (AQP7), and 11 (AQP11) with boar sperm resilience to withstand freeze-thawing procedures. Andrology 5(6):1153–1164

    Article  CAS  PubMed  Google Scholar 

  111. Fujii T et al (2018) Expression and localization of aquaporins 3 and 7 in bull spermatozoa and their relevance to sperm motility after cryopreservation. J Reprod Dev 64(4):327–335

    Article  PubMed  PubMed Central  Google Scholar 

  112. Morato R et al (2018) Aquaporin 11 is related to cryotolerance and fertilising ability of frozen-thawed bull spermatozoa. Reprod Fertil Dev 30(8):1099–1108

    Article  CAS  PubMed  Google Scholar 

  113. Bonilla-Correal S et al (2017) First evidence for the presence of aquaporins in stallion sperm. Reprod Domest Anim 52(Suppl 4):61–64

    Article  CAS  PubMed  Google Scholar 

  114. Nicotina PA et al (2005) Immunoexpression of aquaporin-1 in adolescent varicocele testes: possible significance for fluid reabsorption. Urology 65(1):149–152

    Article  CAS  PubMed  Google Scholar 

  115. Rato L et al (2012) Metabolic regulation is important for spermatogenesis. Nat Rev Urol 9(6):330–338

    Article  CAS  PubMed  Google Scholar 

  116. Ducza E, Csanyi A, Gaspar R (2017) Aquaporins during pregnancy: their function and significance. Int J Mol Sci 18(12):2593

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wan S et al (2018) Estrogen nuclear receptors affect cell migration by altering sublocalization of AQP2 in glioma cell lines. Cell Death Discov 4:49

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sun XL et al (2007) Aquaporin 4 regulates the effects of ovarian hormones on monoamine neurotransmission. Biochem Biophys Res Commun 353(2):457–462

    Article  CAS  PubMed  Google Scholar 

  119. Johnson ZI et al (2015) Aquaporin 1 and 5 expression decreases during human intervertebral disc degeneration: novel HIF-1-mediated regulation of aquaporins in NP cells. Oncotarget 6(14):11945–11958

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhang A et al (2019) Exosome-mediated microRNA-138 and vascular endothelial growth factor in endometriosis through inflammation and apoptosis via the nuclear factor-kappaB signaling pathway. Int J Mol Med 43(1):358–370

    PubMed  Google Scholar 

  121. Wang W et al (2018) RNA interference-mediated silencing of aquaporin (AQP)-5 hinders angiogenesis of colorectal tumor by suppressing the production of vascular endothelial growth factor. Neoplasma 65(1):55–65

    Article  CAS  PubMed  Google Scholar 

  122. Hall PA et al (1990) Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol 162(4):285–294

    Article  CAS  PubMed  Google Scholar 

  123. Wu X et al (2014) Therapeutic effect of Zeng Ye decoction on primary Sjogren's syndrome via upregulation of aquaporin1 and aquaporin5 expression levels. Mol Med Rep 10(1):429–434

    Article  CAS  PubMed  Google Scholar 

  124. Mints M et al (2007) Expression of aquaporin-1 in endometrial blood vessels in menorrhagia. Int J Mol Med 19(3):407–411

    CAS  PubMed  Google Scholar 

  125. Kleine-Natrop HE (1977) Cosmetics, cosmetic chemistry and dermatology. A sketch of common problems from the viewpoint of the dermatologist. Dermatol Monatsschr 163(7):513–522

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China grants 81974083, 82273999,81330074 and the Beijing Natural Science Foundation grant 7212151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxue Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, H., Yang, B. (2023). Aquaporins in Reproductive System. In: Yang, B. (eds) Aquaporins. Advances in Experimental Medicine and Biology, vol 1398. Springer, Singapore. https://doi.org/10.1007/978-981-19-7415-1_12

Download citation

Publish with us

Policies and ethics