Skip to main content

Nanomaterials and Nanodevices for Treating Human Infectious and Inflammatory Diseases: Bane or Boon for Human Health?

  • Chapter
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 322))

Abstract

The introduction of nanoscience and nanotechnology has been a pathbreaking achievement of modern science and engineering. Development and fabrication of biocompatible nanoparticles, nanocomposites, nano-scaffolds, nanowires, etc., and their stable conjugation with biological molecules indeed came out fruitful in developing nanomaterials and nanodevices for diagnosing and treating life-threatening human diseases. Nano-sized smart materials possess several unique structural and functional traits like controlled bioactivity, superior penetration ability, and sustained action over the treatment time. All these properties have led to the inclusion of several metals and non-metal derived nanomaterials as well as hybrid nanocomposites for diagnosing different infectious and inflammatory complications of humans. Nowadays, nanobiosensors can efficiently trace the affected tissues or diseased organs while targeted delivery of nanoparticles or drug-loaded nano-cargo can provide a suitable outcome within less treatment schedule. However, several important parameters of the nanocomposites like size, drug-loading methods, dose of the drug/nanoparticle-drug conjugate, and bioavailability are of major concern to yield the desired efficacy of a nanoformulation. Alteration or disproportion in any of the aforementioned parameters could induce toxic side effects. Considering all the facts, the present chapter depicts a comprehensive overview of the properties, bioactivities, molecular mode of action, and toxicity of various nanomaterials and nanodevices having the potential to diagnose and treat various inflammatory and infectious diseases in humans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K.: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018). https://doi.org/10.3762/bjnano.9.98

    Article  Google Scholar 

  2. Pelaz, B., Alexiou, C., Alvarez-Puebla, R.A., Alves, F., Andrews, A.M., Ashraf, S., Balogh, L.P., Ballerini, L., Bestetti, A., Brendel, C., Bosi, S., Carril, M., Chan, W.C.W., Chen, C., Chen, X., Chen, X., Cheng, Z., Cui, D., Du, J., Dullin, C., Escudero, A., Feliu, N., Gao, M., George, M., Gogotsi, Y., Grünweller, A., Gu, Z., Halas, N.J., Hampp, N., Hartmann, R.K., Hersam, M.C., Hunziker, P., Jian, J., Jiang, X., Jungebluth, P., Kadhiresan, P., Kataoka, K., Khademhosseini, A., Kopeček, J., Kotov, N.A., Krug, H.F., Lee, D.S., Lehr, C.-M., Leong, K.W., Liang, X.-J., Ling Lim, M., Liz-Marzán, L.M., Ma, X., Macchiarini, P., Meng, H., Möhwald, H., Mulvaney, P., Nel, A.E., Nie, S., Nordlander, P., Okano, T., Oliveira, J., Park, T.H., Penner, R.M., Prato, M., Puntes, V., Rotello, V.M., Samarakoon, A., Schaak, R.E., Shen, Y., Sjöqvist, S., Skirtach, A.G., Soliman, M.G., Stevens, M.M., Sung, H.-W., Tang, B.Z., Tietze, R., Udugama, B.N., VanEpps, J.S., Weil, T., Weiss, P.S., Willner, I., Wu, Y., Yang, L., Yue, Z., Zhang, Q., Zhang, Q., Zhang, X.-E., Zhao, Y., Zhou, X., Parak, W.J.: Diverse applications of nanomedicine. ACS Nano. 11, 2313–2381 (2017). https://doi.org/10.1021/acsnano.6b06040

  3. Barhoum, A., García-Betancourt, M.L., Jeevanandam, J., Hussien, E.A., Mekkawy, S.A., Mostafa, M., Omran, M.M., S. Abdalla, M., Bechelany, M.: Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations (2022)

    Google Scholar 

  4. Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A.R., Ali, J.S., Hussain, A.: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67 (2016). https://doi.org/10.2147/NSA.S99986

    Article  CAS  Google Scholar 

  5. Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.D.P., Acosta-Torres, L.S., Diaz-Torres, L.A., Grillo, R., Swamy, M.K., Sharma, S., Habtemariam, S., Shin, H.-S.: Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol 16, 71 (2018). https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  6. Thurner, G.C., Debbage, P.: Molecular imaging with nanoparticles: the dwarf actors revisited 10 years later. Histochem. Cell Biol. 150, 733–794 (2018). https://doi.org/10.1007/s00418-018-1753-y

    Article  CAS  Google Scholar 

  7. Chatterjee, N., Manna, K., Mukherjee, N., Das Saha, K.: Chapter 20—Challenges and future prospects and commercial viability of biosensor-based devices for disease diagnosis. In: Presented at the (2022)

    Google Scholar 

  8. Malhotra, B.D., Ali, M.A.: Nanomaterials in biosensors: fundamentals and applications. Nanomater. Biosens. 1–74 (2018). https://doi.org/10.1016/B978-0-323-44923-6.00001-7

  9. Jin, C., Wang, K., Oppong-Gyebi, A., Hu, J.: Application of nanotechnology in cancer diagnosis and therapy—A mini-review. Int. J. Med. Sci. 17, 2964–2973 (2020). https://doi.org/10.7150/ijms.49801

    Article  CAS  Google Scholar 

  10. Manna, K., Mukherjee, N., Chatterjee, N., Das Saha, K.: Cancer diagnosis by biosensor-based devices: types and challenges. In: Biosensor based advanced cancer diagnostics (2021). https://doi.org/10.1016/B978-0-12-823424-2.00017-X

  11. Mukherjee, N., Chatterjee, N., Manna, K., Das Saha, K.: Chapter 2—Types of cancer diagnostics, the current achievements, and challenges. In: Biosensor based advanced cancer diagnostics (2021). https://doi.org/10.1016/B978-0-12-823424-2.00022-3

  12. Hu, Y., Fine, D.H., Tasciotti, E., Bouamrani, A., Ferrari, M.: Nanodevices in diagnostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3, 11–32 (2011). https://doi.org/10.1002/wnan.82

    Article  CAS  Google Scholar 

  13. Bharali, D.J., Khalil, M., Gurbuz, M., Simone, T.M., Mousa, S.A.: Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int. J. Nanomedicine. 4, 1–7 (2009)

    CAS  Google Scholar 

  14. Bohunicky, B., Mousa, S.A.: Biosensors: the new wave in cancer diagnosis. Nanotechnol. Sci. Appl. 4, 1–10 (2010). https://doi.org/10.2147/NSA.S13465

    Article  CAS  Google Scholar 

  15. Mukherjee, S., Mukherjee, N.: Current developments in diagnostic biosensor technology: relevance to therapeutic intervention of infectious and inflammatory diseases of human. In : Dutta, G., Biswas, A., Chakrabarti, A. (eds.) Modern techniques in biosensors. Studies in systems, decision and control, vol. 327. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9612-4_1

  16. Banerjee, S., Mukherjee, N., Gajbhiye, R.L., Mishra, S., Jaisankar, P., Datta, S., Das Saha, K.: Intracellular anti-leishmanial effect of Spergulin-A, a triterpenoid saponin of Glinus oppositifolius. Infect. Drug Resist. 12, 2933–2942 (2019). https://doi.org/10.2147/IDR.S211721

    Article  CAS  Google Scholar 

  17. Patra, R., Mukherjee, S., Das, N.C.: Exploring the differential expression and prognostic significance of the COL11A1 gene in human colorectal carcinoma: an integrated bioinformatics approach. Front. Genet. 12, 88 (2021). https://doi.org/10.3389/fgene.2021.608313

    Article  CAS  Google Scholar 

  18. Mukherjee, S., Huda, S., Sinha Babu, S.P.: Toll-like receptor polymorphism in host immune response to infectious diseases: a review. Scand. J. Immunol. 90, e12771 (2019). https://doi.org/10.1111/sji.12771

    Article  CAS  Google Scholar 

  19. Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H., Nisar, M.A., Alvi, R.F., Aslam, M.A., Qamar, M.U., Salamat, M.K.F., Baloch, Z.: Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11, 1645–1658 (2018). https://doi.org/10.2147/IDR.S173867

    Article  CAS  Google Scholar 

  20. Das, N.C., Patra, R., Dey, A., Mukherjee, S.: Probiotics as efficacious therapeutic option for treating gut-related diseases: molecular and immunobiological perspectives. In: Behera, K.K., Bist, R., Mohanty, S., Bhattacharya, M. (eds.) Prebiotics, probiotics and nutraceuticals. Springer, Singapore. https://doi.org/10.1007/978-981-16-8990-1_5

  21. Patra, R., Mitra, S., Das, N.C., Mukherjee, S.: Prebiotics as promising therapeutics for treating gut-related disorders: biochemical and molecular perspectives. In: Behera, K.K., Bist, R., Mohanty, S., Bhattacharya, M. (eds.) Prebiotics, probiotics and nutraceuticals. Springer, Singapore. https://doi.org/10.1007/978-981-16-8990-1_8

  22. Baer, D.R., Engelhard, M.H., Johnson, G.E., Laskin, J., Lai, J., Mueller, K., Munusamy, P., Thevuthasan, S., Wang, H., Washton, N., Elder, A., Baisch, B.L., Karakoti, A., Kuchibhatla, S.V.N.T., Moon, D.: Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. J. Vac. Sci. Technol. A Vacuum Surfaces Film. Off. J. Am. Vac. Soc. 31, 50820 (2013). https://doi.org/10.1116/1.4818423

  23. Tiwari, R., Banerjee, S., Tyde, D., Saha, K., Das, Ethirajan, A., Mukherjee, N., Chattopadhy, S., Pramanik, S.K., Das, A.: Redox-responsive nanocapsules for the spatiotemporal release of miltefosine in lysosome: protection against leishmania. Bioconjug. Chem. 32, 245–253 (2021). https://doi.org/10.1021/acs.bioconjchem.0c00667

  24. Zhang, Y., Li, M., Gao, X., Chen, Y., Liu, T.: Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J. Hematol. Oncol. 12, 137 (2019). https://doi.org/10.1186/s13045-019-0833-3

    Article  Google Scholar 

  25. Chinen, A.B., Guan, C.M., Ferrer, J.R., Barnaby, S.N., Merkel, T.J., Mirkin, C.A.: Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 115, 10530–10574 (2015). https://doi.org/10.1021/acs.chemrev.5b00321

    Article  CAS  Google Scholar 

  26. Bhalla, N., Jolly, P., Formisano, N., Estrela, P.: Introduction to biosensors. Essays Biochem. 60, 1–8 (2016). https://doi.org/10.1042/EBC20150001

    Article  Google Scholar 

  27. Zhang, A., Lieber, C.M.: Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016). https://doi.org/10.1021/acs.chemrev.5b00608

    Article  CAS  Google Scholar 

  28. Nguyen, T., Zoëga Andreasen, S., Wolff, A., Duong Bang, D.: From lab on a chip to point of care devices: the role of open source microcontrollers. Micromachines 9 (2018). https://doi.org/10.3390/mi9080403

  29. Wagner, A.M., Knipe, J.M., Orive, G., Peppas, N.A.: Quantum dots in biomedical applications. Acta Biomater. 94, 44–63 (2019). https://doi.org/10.1016/j.actbio.2019.05.022

    Article  CAS  Google Scholar 

  30. Barroso, M.M.: Quantum dots in cell biology. J. Histochem. Cytochem. Off. J. Histochem. Soc. 59, 237–251 (2011). https://doi.org/10.1369/0022155411398487

    Article  CAS  Google Scholar 

  31. Matea, C.T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C., Mocan, L.: Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomed. 12, 5421–5431 (2017). https://doi.org/10.2147/IJN.S138624

    Article  CAS  Google Scholar 

  32. Mokhtarzadeh, A., Eivazzadeh-Keihan, R., Pashazadeh, P., Hejazi, M., Gharaatifar, N., Hasanzadeh, M., Baradaran, B., de la Guardia, M.: Nanomaterial-based biosensors for detection of pathogenic virus. Trends Analyt. Chem. 97, 445–457 (2017). https://doi.org/10.1016/j.trac.2017.10.005

    Article  CAS  Google Scholar 

  33. Ventola, C.L.: The nanomedicine revolution: part 2: current and future clinical applications. P T. 37, 582–591 (2012)

    Google Scholar 

  34. Noah, N.M., Ndangili, P.M.: Current trends of nanobiosensors for point-of-care diagnostics. J. Anal. Methods Chem. 2019, 2179718 (2019). https://doi.org/10.1155/2019/2179718

    Article  CAS  Google Scholar 

  35. Kumar, R., Chhikara, B.S., Gulia, K., Chhillar, M.: Review of nanotheranostics for molecular mechanisms underlying psychiatric disorders and commensurate nanotherapeutics for neuropsychiatry: the mind knockout. Nanotheranostics. 5, 288–308 (2021). https://doi.org/10.7150/ntno.49619

    Article  Google Scholar 

  36. Azizipour, N., Avazpour, R., Rosenzweig, D.H., Sawan, M., Ajji, A.: Evolution of biochip technology: a review from lab-on-a-chip to organ-on-a-chip. Micromachines 11 (2020) https://doi.org/10.3390/mi11060599

  37. Jarockyte, G., Karabanovas, V., Rotomskis, R., Mobasheri, A.: Multiplexed nanobiosensors: current trends in early diagnostics. Sensors (Basel). 20 (2020). https://doi.org/10.3390/s20236890

  38. Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wang, Y., Wu, S., Deng, Y., Zhang, J., Shao, A.: Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 7, 193 (2020). https://doi.org/10.3389/fmolb.2020.00193

    Article  CAS  Google Scholar 

  39. Soares, S., Sousa, J., Pais, A., Vitorino, C.: Nanomedicine: principles, properties, and regulatory issues. Front. Chem. 6, 360 (2018). https://doi.org/10.3389/fchem.2018.00360

    Article  CAS  Google Scholar 

  40. Din, F.U., Aman, W., Ullah, I., Qureshi, O.S., Mustapha, O., Shafique, S., Zeb, A.: Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine. 12, 7291–7309 (2017). https://doi.org/10.2147/IJN.S146315

    Article  Google Scholar 

  41. Chowdhury, P., Roy, B., Mukherjee, N., Mukherjee, S., Joardar, N., Mondal, M.K., Roy, D., Sinha Babu, S.P.: Chitosan biopolymer functionalized gold nanoparticles with controlled cytotoxicity and improved antifilarial efficacy. Adv. Compos. Hybrid Mater. 1, 577–590 (2018). https://doi.org/10.1007/s42114-018-0040-7

    Article  CAS  Google Scholar 

  42. Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., Rizzolio, F.: The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 25 (2019). https://doi.org/10.3390/molecules25010112

  43. Murthy, S.K.: Nanoparticles in modern medicine: state of the art and future challenges. Int. J. Nanomed. 2, 129–141 (2007)

    CAS  Google Scholar 

  44. Gupta, R., Xie, H.: Nanoparticles in daily life: applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol. Off. Organ Int. Soc. Environ. Toxicol. Cancer. 37, 209–230 (2018). https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009

  45. Blanco, E., Shen, H., Ferrari, M.: Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015). https://doi.org/10.1038/nbt.3330

    Article  CAS  Google Scholar 

  46. Chowdhury, P., Roy, B., Mukherjee, S., Mukherjee, N., Joardar, N., Roy, D., Chowdhury, S., Babu, S.P.S.: Polymer anchored gold nanoparticles: synthesis, characterization and antimicrobial activities. Nanosci. Nanotechnol.-Asia. 11, 119–131 (2021)

    Article  CAS  Google Scholar 

  47. Joardar, N., Mukherjee, N., Halder, S., Jana, K., Sinha Babu, S.P.: Triggering the downstream apoptotic signal inside human parasitic organisms demonstrates a promising approach for anti-parasitic drug development: a mechanistic perspective. Adv. Protein Chem. Struct. Biol. 125, 193–213 (2021). https://doi.org/10.1016/bs.apcsb.2020.12.002

    Article  CAS  Google Scholar 

  48. Onoue, S., Yamada, S., Chan, H.-K.: Nanodrugs: pharmacokinetics and safety. Int. J. Nanomed. 9, 1025–1037 (2014). https://doi.org/10.2147/IJN.S38378

    Article  CAS  Google Scholar 

  49. Roy, B., Mukherjee, S., Mukherjee, N., Chowdhury, P., Sinha Babu, S.P.: Design and green synthesis of polymer inspired nanoparticles for the evaluation of their antimicrobial and antifilarial efficiency. RSC Adv. 4, 34487–34499 (2014). https://doi.org/10.1039/C4RA03732D

    Article  CAS  Google Scholar 

  50. Farjadian, F., Ghasemi, A., Gohari, O., Roointan, A., Karimi, M., Hamblin, M.R.: Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond). 14, 93–126 (2019). https://doi.org/10.2217/nnm-2018-0120

    Article  CAS  Google Scholar 

  51. Wang, E.C., Wang, A.Z.: Nanoparticles and their applications in cell and molecular biology. Integr. Biol. (Camb) 6, 9–26 (2014). https://doi.org/10.1039/c3ib40165k

    Article  CAS  Google Scholar 

  52. Hoshyar, N., Gray, S., Han, H., Bao, G.: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 11, 673–692 (2016). https://doi.org/10.2217/nnm.16.5

    Article  CAS  Google Scholar 

  53. Suk, J.S., Xu, Q., Kim, N., Hanes, J., Ensign, L.M.: PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012

    Article  CAS  Google Scholar 

  54. Longmire, M., Choyke, P.L., Kobayashi, H.: Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond). 3, 703–717 (2008). https://doi.org/10.2217/17435889.3.5.703

    Article  CAS  Google Scholar 

  55. Mirón-Barroso, S., Domènech, E.B., Trigueros, S.: Nanotechnology-based strategies to overcome current barriers in gene delivery. Int. J. Mol. Sci. 22 (2021). https://doi.org/10.3390/ijms22168537

  56. Lee, S.H., Jun, B.-H.: Silver nanoparticles: synthesis and application for nanomedicine. Int. J. Mol. Sci. 20 (2019). https://doi.org/10.3390/ijms20040865

  57. Xu, L., Wang, Y.-Y., Huang, J., Chen, C.-Y., Wang, Z.-X., Xie, H.: Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics. 10, 8996–9031 (2020). https://doi.org/10.7150/thno.45413

    Article  CAS  Google Scholar 

  58. Dey, B., Mukherjee, S., Mukherjee, N., Mondal, R.K., Satpati, B., Senapati, D., Babu, S.P.S.: Green silver nanoparticles for drug transport, bioactivities and a bacterium (Bacillus subtilis)-mediated comparative nano-patterning feature. RSC Adv. 6, 46573–46581 (2016). https://doi.org/10.1039/C5RA27886D

    Article  CAS  Google Scholar 

  59. Ferdous, Z., Nemmar, A.: Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci. 21 (2020). https://doi.org/10.3390/ijms21072375

  60. Montes-Hernandez, G., Di Girolamo, M., Sarret, G., Bureau, S., Fernandez-Martinez, A., Lelong, C., Eymard Vernain, E.: In Situ formation of silver nanoparticles (Ag-NPs) onto textile fibers. ACS Omega 6, 1316–1327 (2021). https://doi.org/10.1021/acsomega.0c04814

  61. Martirosyan, A., Schneider, Y.-J.: Engineered nanomaterials in food: implications for food safety and consumer health. Int. J. Environ. Res. Public Health. 11, 5720–5750 (2014). https://doi.org/10.3390/ijerph110605720

    Article  Google Scholar 

  62. Akter, M., Sikder, M.T., Rahman, M.M., Ullah, A.K.M.A., Hossain, K.F.B., Banik, S., Hosokawa, T., Saito, T., Kurasaki, M.: A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J. Adv. Res. 9, 1–16 (2018). https://doi.org/10.1016/j.jare.2017.10.008

    Article  CAS  Google Scholar 

  63. Domb, A.J., Sharifzadeh, G., Nahum, V., Hosseinkhani, H.: Safety Evaluation of nanotechnology products. Pharmaceutics 13, (2021). https://doi.org/10.3390/pharmaceutics13101615

  64. Zielińska, A., Costa, B., Ferreira, M. V, Miguéis, D., Louros, J.M.S., Durazzo, A., Lucarini, M., Eder, P., Chaud, M. V, Morsink, M., Willemen, N., Severino, P., Santini, A., Souto, E.B.: Nanotoxicology and nanosafety: safety-by-design and testing at a glance. Int. J. Environ. Res. Public Health. 17 (2020). https://doi.org/10.3390/ijerph17134657

  65. Masserini, M.: Nanoparticles for brain drug delivery. ISRN Biochem. 2013, 238428 (2013). https://doi.org/10.1155/2013/238428

    Article  CAS  Google Scholar 

  66. Annu, Sartaj, A., Qamar, Z., Md, S., Alhakamy, N.A., Baboota, S., Ali, J.: An insight to brain targeting utilizing polymeric nanoparticles: effective treatment modalities for neurological disorders and brain tumor. Front. Bioeng. Biotechnol. 10, 788128 (2022). https://doi.org/10.3389/fbioe.2022.788128

  67. Wang, C., Youle, R.J.: The role of mitochondria in apoptosis*. Annu. Rev. Genet. 43, 95–118 (2009). https://doi.org/10.1146/annurev-genet-102108-134850

    Article  CAS  Google Scholar 

  68. Mukherjee, N., Parida, P.K., Santra, A., Ghosh, T., Dutta, A., Jana, K., Misra, A.K., Sinha Babu, S.P.: Oxidative stress plays major role in mediating apoptosis in filarial nematode Setaria cervi in the presence of trans-stilbene derivatives. Free Radic. Biol. Med. 93, 130–144 (2016). https://doi.org/10.1016/j.freeradbiomed.2016.01.027

    Article  CAS  Google Scholar 

  69. Mitchell, M.J., Billingsley, M.M., Haley, R.M., Wechsler, M.E., Peppas, N.A., Langer, R.: Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021). https://doi.org/10.1038/s41573-020-0090-8

    Article  CAS  Google Scholar 

  70. Dong, X.: Current strategies for brain drug delivery. Theranostics. 8, 1481–1493 (2018). https://doi.org/10.7150/thno.21254

    Article  CAS  Google Scholar 

  71. Majumdar, S., Ghosh, M., Mukherjee, S., Satpati, B., Dey, B.: DNA mediated graphene oxide (GO)-nanosheets dispersed supramolecular GO-DNA hydrogel: An efficient soft-milieu for simplistic synthesis of Ag-NPs@GO-DNA and Gram +ve/−ve bacteria-based Ag-NPs@GO-DNA-bacteria nano-bio composites. J. Mol. Liq. 342, 117482 (2021). https://doi.org/10.1016/j.molliq.2021.117482

  72. Wen, H., Jung, H., Li, X.: Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J. 17, 1327–1340 (2015). https://doi.org/10.1208/s12248-015-9814-9

    Article  CAS  Google Scholar 

  73. Sercombe, L., Veerati, T., Moheimani, F., Wu, S.Y., Sood, A.K., Hua, S.: Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015). https://doi.org/10.3389/fphar.2015.00286

    Article  CAS  Google Scholar 

  74. Wang, L., Hu, C., Shao, L.: The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine. 12, 1227–1249 (2017). https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  75. Bozzuto, G., Molinari, A.: Liposomes as nanomedical devices. Int. J. Nanomedicine. 10, 975–999 (2015). https://doi.org/10.2147/IJN.S68861

    Article  CAS  Google Scholar 

  76. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., Nejati-Koshki, K.: Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8, 102 (2013). https://doi.org/10.1186/1556-276X-8-102

    Article  CAS  Google Scholar 

  77. Nisini, R., Poerio, N., Mariotti, S., De Santis, F., Fraziano, M.: The Multirole of Liposomes in therapy and prevention of infectious diseases. Front. Immunol. 9, 155 (2018). https://doi.org/10.3389/fimmu.2018.00155

    Article  CAS  Google Scholar 

  78. Look, M., Bandyopadhyay, A., Blum, J.S., Fahmy, T.M.: Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv. Drug Deliv. Rev. 62, 378–393 (2010). https://doi.org/10.1016/j.addr.2009.11.011

    Article  CAS  Google Scholar 

  79. Lee, Y., Thompson, D.H.: Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9 (2017). https://doi.org/10.1002/wnan.1450

  80. Laffleur, F., Keckeis, V.: Advances in drug delivery systems: work in progress still needed? Int. J. Pharm. X. 2, 100050 (2020). https://doi.org/10.1016/j.ijpx.2020.100050

    Article  CAS  Google Scholar 

  81. Karlsson, J., Vaughan, H.J., Green, J.J.: Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu. Rev. Chem. Biomol. Eng. 9, 105–127 (2018). https://doi.org/10.1146/annurev-chembioeng-060817-084055

    Article  CAS  Google Scholar 

  82. Gagliardi, A., Giuliano, E., Venkateswararao, E., Fresta, M., Bulotta, S., Awasthi, V., Cosco, D.: Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol. 12, 601626 (2021). https://doi.org/10.3389/fphar.2021.601626

    Article  CAS  Google Scholar 

  83. Upadhyay, R.K.: Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res. Int. 2014, 869269 (2014). https://doi.org/10.1155/2014/869269

    Article  CAS  Google Scholar 

  84. Kamaly, N., Yameen, B., Wu, J., Farokhzad, O.C.: Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016). https://doi.org/10.1021/acs.chemrev.5b00346

    Article  CAS  Google Scholar 

  85. Glassman, P.M., Muzykantov, V.R.: Pharmacokinetic and pharmacodynamic properties of drug delivery systems. J. Pharmacol. Exp. Ther. 370, 570–580 (2019). https://doi.org/10.1124/jpet.119.257113

    Article  CAS  Google Scholar 

  86. Rocha, C.V., Gonçalves, V., da Silva, M.C., Bañobre-López, M., Gallo, J.: PLGA-based composites for various biomedical applications. Int. J. Mol. Sci. 23 (2022). https://doi.org/10.3390/ijms23042034

  87. Singh, I., Swami, R., Khan, W., Sistla, R.: Delivery Systems for Lymphatic Targeting (2014)

    Google Scholar 

  88. Alven, S., Aderibigbe, B.A.: Nanoparticles formulations of artemisinin and derivatives as potential therapeutics for the treatment of cancer, leishmaniasis and malaria. Pharmaceutics 12 (2020). https://doi.org/10.3390/pharmaceutics12080748

  89. Mosqueira, V.C.F., Loiseau, P.M., Bories, C., Legrand, P., Devissaguet, J.-P., Barratt, G.: Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrob. Agents Chemother. 48, 1222–1228 (2004). https://doi.org/10.1128/AAC.48.4.1222-1228.2004

    Article  CAS  Google Scholar 

  90. Nafari, A., Cheraghipour, K., Sepahvand, M., Shahrokhi, G., Gabal, E., Mahmoudvand, H.: Nanoparticles: new agents toward treatment of leishmaniasis. Parasite Epidemiol. Control. 10, e00156 (2020). https://doi.org/10.1016/j.parepi.2020.e00156

    Article  Google Scholar 

  91. Choudhury, S.D.: Nano-medicines a hope for Chagas disease! Front. Mol. Biosci. 8, 655435 (2021). https://doi.org/10.3389/fmolb.2021.655435

    Article  CAS  Google Scholar 

  92. Jamshaid, H., Din, F.U., Khan, G.M.: Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. J. Nanobiotechnol. 19, 106 (2021). https://doi.org/10.1186/s12951-021-00853-0

    Article  CAS  Google Scholar 

  93. Hawley, A.E., Illum, L., Davis, S.S.: Preparation of biodegradable, surface engineered PLGA nanospheres with enhanced lymphatic drainage and lymph node uptake. Pharm. Res. 14, 657–661 (1997). https://doi.org/10.1023/a:1012117531448

    Article  CAS  Google Scholar 

  94. Wu, M., Guo, H., Liu, L., Liu, Y., Xie, L.: Size-dependent cellular uptake and localization profiles of silver nanoparticles. Int. J. Nanomed. 14, 4247–4259 (2019). https://doi.org/10.2147/IJN.S201107

    Article  CAS  Google Scholar 

  95. Fisusi, F., Brandy, N., Wu, J., Akala, E.O.: Studies on polyethylene glycol-monoclonal antibody conjugates for fabrication of nanoparticles for biomedical applications. J. Nanosci. nanomedicine. 4, 1–9 (2020)

    Google Scholar 

  96. Ali, M., Afzal, M., Bhattacharya, S.M., Ahmad, F.J., Dinda, A.K.: Nanopharmaceuticals to target antifilarials: a comprehensive review. Expert Opin. Drug Deliv. 10, 665–678 (2013). https://doi.org/10.1517/17425247.2013.771630

    Article  CAS  Google Scholar 

  97. Permana, A.D., Tekko, I.A., McCrudden, M.T.C., Anjani, Q.K., Ramadon, D., McCarthy, H.O., Donnelly, R.F.: Solid lipid nanoparticle-based dissolving microneedles: a promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis. J. Control. Release Off. J. Control. Release Soc. 316, 34–52 (2019). https://doi.org/10.1016/j.jconrel.2019.10.004

  98. Carrillo-Conde, B., Song, E.-H., Chavez-Santoscoy, A., Phanse, Y., Ramer-Tait, A.E., Pohl, N.L.B., Wannemuehler, M.J., Bellaire, B.H., Narasimhan, B.: Mannose-functionalized “pathogen-like” polyanhydride nanoparticles target C-type lectin receptors on dendritic cells. Mol. Pharm. 8, 1877–1886 (2011). https://doi.org/10.1021/mp200213r

    Article  CAS  Google Scholar 

  99. Ghasemiyeh, P., Mohammadi-Samani, S.: Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res. Pharm. Sci. 13, 288–303 (2018). https://doi.org/10.4103/1735-5362.235156

    Article  Google Scholar 

  100. Scioli Montoto, S., Muraca, G., Ruiz, M.E.: Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front. Mol. Biosci. 7, 587997 (2020). https://doi.org/10.3389/fmolb.2020.587997

    Article  CAS  Google Scholar 

  101. Mukherjee, S., Ray, S., Thakur, R.S.: Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 71, 349–358 (2009). https://doi.org/10.4103/0250-474X.57282

    Article  CAS  Google Scholar 

  102. Hosseini, S.M., Farmany, A., Abbasalipourkabir, R., Soleimani Asl, S., Nourian, A., Arabestani, M.R.: Doxycycline-encapsulated solid lipid nanoparticles for the enhanced antibacterial potential to treat the chronic brucellosis and preventing its relapse: in vivo study. Ann. Clin. Microbiol. Antimicrob. 18, 33 (2019). https://doi.org/10.1186/s12941-019-0333-x

    Article  CAS  Google Scholar 

  103. Ghaderkhani, J., Yousefimashouf, R., Arabestani, M., Roshanaei, G., Asl, S.S., Abbasalipourkabir, R.: Improved antibacterial function of Rifampicin-loaded solid lipid nanoparticles on Brucella abortus. Artif. Cells Nanomed. Biotechnol. 47, 1181–1193 (2019). https://doi.org/10.1080/21691401.2019.1593858

  104. Vieira, A.C.C., Chaves, L.L., Pinheiro, M., Lima, S.A.C., Ferreira, D., Sarmento, B., Reis, S.: Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artif. Cells Nanomed. Biotechnol. 46, 653–663 (2018). https://doi.org/10.1080/21691401.2018.1434186

  105. Kennedy, P.G.E., Rodgers, J.: Clinical and neuropathogenetic aspects of human African trypanosomiasis. Front. Immunol. 10, 39 (2019). https://doi.org/10.3389/fimmu.2019.00039

    Article  CAS  Google Scholar 

  106. Gujjari, L., Kalani, H., Pindiprolu, S.K., Arakareddy, B.P., Yadagiri, G.: Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria. Parasite Epidemiol. Control 17, e00244 (2022). https://doi.org/10.1016/j.parepi.2022.e00244

    Article  Google Scholar 

  107. Machelart, A., Van Vyve, M., Potemberg, G., Demars, A., De Trez, C., Tima, H.G., Vanwalleghem, G., Romano, M., Truyens, C., Letesson, J.-J., Muraille, E.: Trypanosoma infection favors brucella elimination via IL-12/IFNγ-dependent pathways. Front. Immunol. 8, 903 (2017). https://doi.org/10.3389/fimmu.2017.00903

    Article  CAS  Google Scholar 

  108. Makwana, V., Jain, R., Patel, K., Nivsarkar, M., Joshi, A.: Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: elucidation of mechanism of uptake using chylomicron flow blocking approach. Int. J. Pharm. 495, 439–446 (2015). https://doi.org/10.1016/j.ijpharm.2015.09.014

    Article  CAS  Google Scholar 

  109. Andrade, L.N., Oliveira, D.M.L., Chaud, M. V, Alves, T.F.R., Nery, M., da Silva, C.F., Gonsalves, J.K.C., Nunes, R.S., Corrêa, C.B., Amaral, R.G., Sanchez-Lopez, E., Souto, E.B., Severino, P.: Praziquantel-solid lipid nanoparticles produced by supercritical carbon dioxide extraction: physicochemical characterization, release profile, and cytotoxicity. Molecules 24, (2019). https://doi.org/10.3390/molecules24213881

  110. Granja, A., Lima-Sousa, R., Alves, C.G., de Melo-Diogo, D., Pinheiro, M., Sousa, C.T., Correia, I.J., Reis, S.: Mitoxantrone-loaded lipid nanoparticles for breast cancer therapy—Quality-by-design approach and efficacy assessment in 2D and 3D in vitro cancer models. Int. J. Pharm. 607, 121044 (2021). https://doi.org/10.1016/j.ijpharm.2021.121044

    Article  CAS  Google Scholar 

  111. Chaturvedi, S., Verma, A., Saharan, V.A.: Lipid drug carriers for cancer therapeutics: an insight into lymphatic targeting, P-gp, CYP3A4 modulation and bioavailability enhancement. Adv. Pharm. Bull. 10, 524–541 (2020). https://doi.org/10.34172/apb.2020.064

  112. Arana, L., Gallego, L., Alkorta, I.: Incorporation of antibiotics into solid lipid nanoparticles: a promising approach to reduce antibiotic resistance emergence. Nanomater. (Basel, Switzerland). 11 (2021). https://doi.org/10.3390/nano11051251

  113. Pandian, S.R.K., Panneerselvam, T., Pavadai, P., Govindaraj, S., Ravishankar, V., Palanisamy, P., Sampath, M., Sankaranarayanan, M., Kunjiappan, S.: nano based approach for the treatment of neglected tropical diseases (2021)

    Google Scholar 

  114. Jaiswal, M., Dudhe, R., Sharma, P.K.: Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 5 123–127 (2015). https://doi.org/10.1007/s13205-014-0214-0

  115. Tang, Y., Wang, X., Li, J., Nie, Y., Liao, G., Yu, Y., Li, C.: Overcoming the reticuloendothelial system barrier to drug delivery with a “Don’t-Eat-Us” strategy. ACS Nano 13, 13015–13026 (2019). https://doi.org/10.1021/acsnano.9b05679

    Article  CAS  Google Scholar 

  116. Kumar, M., Bishnoi, R.S., Shukla, A.K., Jain, C.P.: Techniques for formulation of nanoemulsion drug delivery system: a review. Prev. Nutr. food Sci. 24, 225–234 (2019). https://doi.org/10.3746/pnf.2019.24.3.225

    Article  CAS  Google Scholar 

  117. De Jong, W.H., Borm, P.J.A.: Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3, 133–149 (2008). https://doi.org/10.2147/ijn.s596

    Article  Google Scholar 

  118. Boerman, O.C., Storm, G., Oyen, W.J., van Bloois, L., van der Meer, J.W., Claessens, R.A., Crommelin, D.J., Corstens, F.H.: Sterically stabilized liposomes labeled with indium-111 to image focal infection. J. Nucl. Med. 36, 1639–1644 (1995)

    CAS  Google Scholar 

  119. Laverman, P., Dams, E.T., Storm, G., Hafmans, T.G., Croes, H.J., Oyen, W.J., Corstens, F.H., Boerman, O.C.: Microscopic localization of PEG-liposomes in a rat model of focal infection. J. Control. Release Off. J. Control. Release Soc. 75, 347–355 (2001). https://doi.org/10.1016/s0168-3659(01)00402-3

  120. Kaim, A.H., Wischer, T., O’Reilly, T., Jundt, G., Fröhlich, J., von Schulthess, G.K., Allegrini, P.R.: MR imaging with ultrasmall superparamagnetic iron oxide particles in experimental soft-tissue infections in rats. Radiology 225, 808–814 (2002). https://doi.org/10.1148/radiol.2253011485

    Article  Google Scholar 

  121. Nederberg, F., Zhang, Y., Tan, J.P.K., Xu, K., Wang, H., Yang, C., Gao, S., Guo, X.D., Fukushima, K., Li, L., Hedrick, J.L., Yang, Y.-Y.: Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 3, 409–414 (2011). https://doi.org/10.1038/nchem.1012

    Article  CAS  Google Scholar 

  122. Umamaheshwari, R.B., Jain, N.K.: Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. J. Drug Target. 11, 414–415 (2003). https://doi.org/10.1080/10611860310001647771

    Article  CAS  Google Scholar 

  123. Duan, N., Wu, S., Chen, X., Huang, Y., Xia, Y., Ma, X., Wang, Z.: Selection and characterization of aptamers against Salmonella typhimurium using whole-bacterium systemic evolution of ligands by exponential enrichment (SELEX). J. Agric. Food Chem. 61, 3229–3234 (2013). https://doi.org/10.1021/jf400767d

    Article  CAS  Google Scholar 

  124. Chen, F., Zhou, J., Luo, F., Mohammed, A.-B., Zhang, X.-L.: Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun. 357, 743–748 (2007). https://doi.org/10.1016/j.bbrc.2007.04.007

    Article  CAS  Google Scholar 

  125. Briones, E., Colino, C.I., Lanao, J.M.: Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J. Control. Release Off. J. Control. Release Soc. 125, 210–227 (2008). https://doi.org/10.1016/j.jconrel.2007.10.027

  126. Ponnappa, B.C., Dey, I., Tu, G.C., Zhou, F., Aini, M., Cao, Q.N., Israel, Y.: In vivo delivery of antisense oligonucleotides in pH-sensitive liposomes inhibits lipopolysaccharide-induced production of tumor necrosis factor-alpha in rats. J. Pharmacol. Exp. Ther. 297, 1129–1136 (2001)

    CAS  Google Scholar 

  127. Beauregard, K.E., Lee, K.D., Collier, R.J., Swanson, J.A.: pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J. Exp. Med. 186, 1159–1163 (1997). https://doi.org/10.1084/jem.186.7.1159

    Article  CAS  Google Scholar 

  128. Pornpattananangkul, D., Olson, S., Aryal, S., Sartor, M., Huang, C.-M., Vecchio, K., Zhang, L.: Stimuli-responsive liposome fusion mediated by gold nanoparticles. ACS Nano 4, 1935–1942 (2010). https://doi.org/10.1021/nn9018587

    Article  CAS  Google Scholar 

  129. Thamphiwatana, S., Fu, V., Zhu, J., Lu, D., Gao, W., Zhang, L.: Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery. Langmuir 29, 12228–12233 (2013). https://doi.org/10.1021/la402695c

    Article  CAS  Google Scholar 

  130. Halwani, M., Yebio, B., Suntres, Z.E., Alipour, M., Azghani, A.O., Omri, A.: Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 62, 1291–1297 (2008). https://doi.org/10.1093/jac/dkn422

    Article  CAS  Google Scholar 

  131. Alipour, M., Suntres, Z.E., Lafrenie, R.M., Omri, A.: Attenuation of Pseudomonas aeruginosa virulence factors and biofilms by co-encapsulation of bismuth-ethanedithiol with tobramycin in liposomes. J. Antimicrob. Chemother. 65, 684–693 (2010). https://doi.org/10.1093/jac/dkq036

    Article  CAS  Google Scholar 

  132. Schiffelers, R.M., Storm, G., ten Kate, M.T., Stearne-Cullen, L.E.T., den Hollander, J.G., Verbrugh, H.A., Bakker-Woudenberg, I.A.J.M.: Liposome-enabled synergistic interaction of antimicrobial agents. J. Liposome Res. 12, 121–127 (2002). https://doi.org/10.1081/lpr-120004784

    Article  CAS  Google Scholar 

  133. Gao, W., Thamphiwatana, S., Angsantikul, P., Zhang, L.: Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6, 532–547 (2014). https://doi.org/10.1002/wnan.1282

    Article  CAS  Google Scholar 

  134. Villa, C.H., Dao, T., Ahearn, I., Fehrenbacher, N., Casey, E., Rey, D.A., Korontsvit, T., Zakhaleva, V., Batt, C.A., Philips, M.R., Scheinberg, D.A.: Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 5, 5300–5311 (2011). https://doi.org/10.1021/nn200182x

    Article  CAS  Google Scholar 

  135. Heit, A., Schmitz, F., Haas, T., Busch, D.H., Wagner, H.: Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity. Eur. J. Immunol. 37, 2063–2074 (2007). https://doi.org/10.1002/eji.200737169

    Article  CAS  Google Scholar 

  136. Nochi, T., Yuki, Y., Takahashi, H., Sawada, S., Mejima, M., Kohda, T., Harada, N., Kong, I.G., Sato, A., Kataoka, N., Tokuhara, D., Kurokawa, S., Takahashi, Y., Tsukada, H., Kozaki, S., Akiyoshi, K., Kiyono, H.: Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat. Mater. 9, 572–578 (2010). https://doi.org/10.1038/nmat2784

    Article  CAS  Google Scholar 

  137. Zhao, X., Hilliard, L.R., Mechery, S.J., Wang, Y., Bagwe, R.P., Jin, S., Tan, W.: A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 101, 15027–15032 (2004). https://doi.org/10.1073/pnas.0404806101

    Article  CAS  Google Scholar 

  138. Alivisatos, P.: The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52 (2004). https://doi.org/10.1038/nbt927

    Article  CAS  Google Scholar 

  139. Abdelhamid, H.N., Wu, H.-F.: Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. J. Mater. Chem. B. 1, 6094–6106 (2013). https://doi.org/10.1039/c3tb21020k

    Article  CAS  Google Scholar 

  140. Corchero, J.L., Villaverde, A.: Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol. 27, 468–476 (2009). https://doi.org/10.1016/j.tibtech.2009.04.003

    Article  CAS  Google Scholar 

  141. Chung, H.J., Castro, C.M., Im, H., Lee, H., Weissleder, R.: A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat. Nanotechnol. 8, 369–375 (2013). https://doi.org/10.1038/nnano.2013.70

    Article  CAS  Google Scholar 

  142. Das, N.C., Roy, B., Patra, R., Choudhury, A., Ghosh, M., Mukherjee, S.: Surface-modified noble metal nanoparticles as antimicrobial agents: biochemical, molecular and therapeutic perspectives. In: Maddela, N.R., Chakraborty, S., Prasad, R. (eds.) Nanotechnology for advances in medical microbiology. Environmental and microbial biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9916-3_7

  143. Wypij, M., Jędrzejewski, T., Trzcińska-Wencel, J., Ostrowski, M., Rai, M., Golińska, P.: Green synthesized silver nanoparticles: antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front. Microbiol. 12, 632505 (2021). https://doi.org/10.3389/fmicb.2021.632505

    Article  Google Scholar 

  144. Makama, S., Kloet, S.K., Piella, J., van den Berg, H., de Ruijter, N.C.A., Puntes, V.F., Rietjens, I.M.C.M., van den Brink, N.W.: Effects of systematic variation in size and surface coating of silver nanoparticles on their in vitro toxicity to macrophage RAW 264.7 cells. Toxicol. Sci. 162, 79–88 (2018). https://doi.org/10.1093/toxsci/kfx228

  145. Xin, L., Wang, J., Fan, G., Che, B., Wu, Y., Guo, S., Tong, J.: Oxidative stress and mitochondrial injury-mediated cytotoxicity induced by silver nanoparticles in human A549 and HepG2 cells. Environ. Toxicol. 31, 1691–1699 (2016). https://doi.org/10.1002/tox.22171

    Article  CAS  Google Scholar 

  146. Kalishwaralal, K., Banumathi, E., Ram Kumar Pandian, S., Deepak, V., Muniyandi, J., Eom, S.H., Gurunathan, S.: Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf. B. Biointerfaces 73, 51–57 (2009). https://doi.org/10.1016/j.colsurfb.2009.04.025

  147. Wang, R., Song, B., Wu, J., Zhang, Y., Chen, A., Shao, L.: Potential adverse effects of nanoparticles on the reproductive system. Int. J. Nanomed. 13, 8487–8506 (2018). https://doi.org/10.2147/IJN.S170723

    Article  CAS  Google Scholar 

  148. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., Bitto, A.: Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 8416763 (2017). https://doi.org/10.1155/2017/8416763

    Article  CAS  Google Scholar 

  149. Shi, H., Magaye, R., Castranova, V., Zhao, J.: Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre Toxicol. 10, 15 (2013). https://doi.org/10.1186/1743-8977-10-15

    Article  CAS  Google Scholar 

  150. Hotez, P.J., Brindley, P.J., Bethony, J.M., King, C.H., Pearce, E.J., Jacobson, J.: Helminth infections: the great neglected tropical diseases. J. Clin. Invest. 118, 1311–1321 (2008). https://doi.org/10.1172/JCI34261

    Article  CAS  Google Scholar 

  151. Das, N.C., Patra, R., Gupta, P.S. Sen, Ghosh, P., Bhattacharya, M., Rana, M.K., Mukherjee, S.: Designing of a novel multi-epitope peptide based vaccine against Brugia malayi: an in silico approach. Infect. Genet. Evol. 87, 104633 (2021). https://doi.org/10.1016/j.meegid.2020.104633

Download references

Acknowledgements

SM thanks University Grants Commission (UGC) (Ref no. F.2-12/2019(STRIDE-1) and KNU-UGC STRIDE (Ref no. KNU/R/STRIDE/1077/21) and Department of Science and Technology-Science & Engineering Research Board (DST-SERB) (Ref no.- CRG/2021/002605) awarding research grants. Due to limited and constrained space, there are equally important publications we are unable to acknowledge (cite); however, we are also grateful to the uncited related articles/studies related to this current chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprabhat Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, N., Dey, S., Modak, B.K., Mukherjee, S. (2023). Nanomaterials and Nanodevices for Treating Human Infectious and Inflammatory Diseases: Bane or Boon for Human Health?. In: Dutta, G., Biswas, A. (eds) Next Generation Smart Nano-Bio-Devices. Smart Innovation, Systems and Technologies, vol 322. Springer, Singapore. https://doi.org/10.1007/978-981-19-7107-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7107-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7106-8

  • Online ISBN: 978-981-19-7107-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics