Skip to main content

Alginate Based Polyelectrolyte Complexes for Drug Delivery and Biomedical Applications

  • Chapter
  • First Online:
  • 415 Accesses

Abstract

Alginate is one of the most abundant natural biopolymers on earth. It has found immense application in controlled drug delivery owing to its promising profile with respect to safety and biocompatibility, which is missing with several other polymers of interest. It has an inherent mucoadhesive property and can hold substantial amount of water in its matrix to form hydrogels. Alginate is anionic in nature due to presence of carboxylic groups in its polymeric backbone. It can readily crosslink with cations (cationic polymers or ions) to form polyelectrolyte complexes. Latter find applications in the areas ranging from controlled drug delivery to wound dressing scaffold or tissue implants.

The present chapter gives an extensive overview of alginate-based polyelectrolyte complexes including factors affecting their generation. The last part of the chapter focuses on elaborating their biomedical applications including drug delivery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abasalizadeh F, Moghaddam SV, Alizadeh E, Akbari E, Kashani E, Fazljou SMB, Torbati M, Akbarzadeh A (2020) Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 14:8–8

    Article  CAS  Google Scholar 

  • Abbah SA, Liu J, Lam R, Cho J, Wong H-K (2012) In vivo bioactivity of rhBMP-2 delivered with novel polyelectrolyte complexation shells assembled on an alginate microbead core template. J Control Release 162:364–372

    Article  CAS  Google Scholar 

  • Aderibigbe BA, Buyana B (2018) Alginate in wound dressings. Pharmaceutics 10:42

    Article  Google Scholar 

  • Agarwal T, Narayana SN, Pal K, Pramanik K, Giri S, Banerjee I (2015) Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int J Biol Macromol 75:409–417. https://doi.org/10.1016/j.ijbiomac.2014.12.052

    Article  CAS  Google Scholar 

  • Aguero L, Zaldivar-Silva D, Pena L, Dias ML (2017) Alginate microparticles as oral colon drug delivery device: a review. Carbohydr Polym 168:32–43

    Article  CAS  Google Scholar 

  • Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR (2021) Alginate and alginate composites for biomedical applications. Asian J Pharm Sci 16:280–306

    Article  Google Scholar 

  • Alfatama M, Lim LY, Wong TW (2021) Chitosan oleate-tripolyphosphate complex-coated calcium alginate bead: physicochemical aspects of concurrent core-coat formation. Carbohydr Polym 273:118487

    Article  CAS  Google Scholar 

  • Almurisi SH, Doolaanea AA, Akkawi ME, Chatterjee B, Sarker MZI (2020) Taste masking of paracetamol encapsulated in chitosan-coated alginate beads. J Drug Deliv Sci Technol 56:101520

    Article  CAS  Google Scholar 

  • Arora S, Budhiraja RD (2012) Chitosan-alginate microcapsules of amoxicillin for gastric stability and mucoadhesion. J Adv Pharm Technol Res 3:68–74

    CAS  Google Scholar 

  • Azhar F, Olad A (2014) A study on sustained release formulations for oral delivery of 5-fluorouracil based on alginate-chitosan/montmorillonite nanocomposite systems. Appl Clay Sci 101:288–296

    Article  Google Scholar 

  • Badwan AA, Abumalooh A, Sallam E, Abukalaf A, Jawan O (1985) A sustained release drug delivery system using calcium alginate beads. Drug Dev Ind Pharm 11:239–256

    Article  CAS  Google Scholar 

  • Barzegar-Jalali M, Hanaee J, Omidi Y, Ghanbarzadeh S, Ziaee S, Bairami-Atashgah R, Adibkia K (2013) Preparation and evaluation of sustained release calcium alginate beads and matrix tablets of acetazolamide. Drug Res (Stuttg) 63(2):60–64. https://doi.org/10.1055/s-0032-1331755

    Article  CAS  Google Scholar 

  • Bedade DK, Sutar YB, Singhal RS (2019) Chitosan coated calcium alginate beads for covalent immobilization of acrylamidase: process parameters and removal of acrylamide from coffee. Food Chem 275:95–104

    Article  CAS  Google Scholar 

  • Boi S, Rouatbi N, Dellacasa E, Di Lisa D, Bianchini P, Monticelli O, Pastorino L (2020) Alginate microbeads with internal microvoids for the sustained release of drugs. Int J Biol Macromol 156:454–461

    Article  CAS  Google Scholar 

  • Bom S, Santos C, Barros R, Martins AM, Paradiso P, Clãiudio R, Pinto PC, Ribeiro HM, Marto J (2020) Effects of starch incorporation on the physicochemical properties and release kinetics of alginate-based 3D hydrogel patches for topical delivery. Pharmaceutics 12:719

    Article  CAS  Google Scholar 

  • Bosak A, Kwan MWC, Willenberg A, Perle KMDL, Weinstein D, Hines RB, Schultz GS, Ross EA, Willenberg BJ (2019) Capillary alginate gel (Capgela™) for the treatment of full-thickness dermal wounds in a hypoxic mouse model. Int J Polym Mater Polym Biomater 68:1108–1117

    Article  CAS  Google Scholar 

  • Brus J, Urbanova M, Czernek J, Pavelkova M, Kubova K, Vyslouzil J, Abbrent S, Konefal R, Horsky J, Vetchy D, Vyslouzil J, Kulich P (2017) Structure and dynamics of alginate gels cross-linked by polyvalent ions probed via solid state NMR spectroscopy. Biomacromolecules 18:2478–2488

    Article  CAS  Google Scholar 

  • Caetano LA, Almeida AJ, Goncalves LMD (2016) Effect of experimental parameters on alginate/chitosan microparticles for BCG encapsulation. Mar Drugs 14:90

    Article  Google Scholar 

  • Cai L, Cao A, Bai F, Li J (2015) Effect of ε-polylysine in combination with alginate coating treatment on physicochemical and microbial characteristics of Japanese sea bass (Lateolabrax japonicas) during refrigerated storage. LWT Food Sci Technol 62:1053–1059

    Article  CAS  Google Scholar 

  • Camacho DH, Uy SJY, Cabrera MJF, Lobregas MOS, Fajardo T (2019) Encapsulation of folic acid in copper-alginate hydrogels and it’s slow in vitro release in physiological pH condition. Food Res Int 119:15–22. https://doi.org/10.1016/j.foodres.2019.01.053

    Article  CAS  Google Scholar 

  • Chakraborty G, Bhattarai A, De R (2022) Polyelectrolyte-dye interactions: an overview. Polymers 14:598

    Article  CAS  Google Scholar 

  • Chawla A, Sharma P, Pawar P (2012) Eudragit S-100 coated sodium alginate microspheres of naproxen sodium: formulation, optimization and in vitro evaluation. Acta Pharma 62(4):529–545. https://doi.org/10.2478/v10007-012-0034-x

    Article  CAS  Google Scholar 

  • Chekwube E, Onyia O, Ezegbe A, Kalu A, Ugochi E, Ike O (2022) Formulation and evaluation of tinidazole-loaded alginate micro-beads for colon delivery. Afr J Pharm Res Dev 13:76–86

    Google Scholar 

  • Chen F-M, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168

    Article  CAS  Google Scholar 

  • Chen T, Li S, Zhu W, Liang Z, Zeng Q (2019) Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. J Microencapsul 36:96–107

    Article  CAS  Google Scholar 

  • Chremos A, Douglas JF (2018) Polyelectrolyte association and solvation. J Chem Phys 149:163305–163305

    Article  Google Scholar 

  • Coppi G, Iannuccelli V, Leo E, Bernabei M, Cameroni R (2001) Chitosan-alginate microparticles as a protein carrier. Drug Dev Ind Pharm 27:393–400

    Article  CAS  Google Scholar 

  • Creedmed (2022) https://sorbsan.co.uk/. Accessed 21 Oct 2022

  • Crossingham YJ, Kerr PG, Kennedy RA (2014) Comparison of selected physico-chemical properties of calcium alginate films prepared by two different methods. Int J Pharm 473(1-2):259–269. https://doi.org/10.1016/j.ijpharm.2014.06.043

    Article  CAS  Google Scholar 

  • Dakhara SL, Anajwala CC (2011) Polyelectrolyte complex: a pharmaceutical review. Syst Rev Pharm 1:121

    Article  Google Scholar 

  • Dautzenberg H, Linow KJ, Philipp B (1982) Zur Bildung wasserloslicher Polysalze (Symplexe) aus anionischen und kationischen Copolymeren des Acrylamids. 2. Mitt.: einfluß der Ladungsdichte und des Umsatzgrades auf die Struktur der Symplexe. Acta Polymerica 33:619–625

    Article  CAS  Google Scholar 

  • Deol PK, Gill AS, Prajapati S, Kaur IP (2020) Additive manufacturing and nanotherapeutics: present status and future perspectives in wound healing. In: Rai M (ed) Nanotechnology in skin, soft tissue, and bone infections. Springer International Publishing, Cham, pp 205–220

    Chapter  Google Scholar 

  • Devi N, Hazarika D, Deka C, Kakati D (2012) Study of complex coacervation of gelatin A and sodium alginate for microencapsulation of olive oil. J Macromol Sci 49:936–945

    Article  CAS  Google Scholar 

  • Devi N, Deka C, Maji T, Kakati D (2016) Gelatin and gelatin-polyelectrolyte complexes: drug delivery. In: Mishra M (ed) Encyclopedia of biomedical polymers and polymeric biomaterials. CRC Press, Boca Raton, FL

    Google Scholar 

  • Diniz FR, Maia RCAP, Rannier Andrade L, Andrade LN, Vinicius Chaud M, Da Silva CF, Correa CB, De Albuquerque Junior RLC, Pereira Da Costa L, Shin SR, Hassan S, Sanchez-Lopez E, Souto EB, Severino P (2020) Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials (Basel) 10(2):390

    Article  CAS  Google Scholar 

  • Dodero A, Alberti S, Gaggero G, Ferretti M, Botter R, Vicini S, Castellano M (2021) An up-to-date review on alginate nanoparticles and nanofibers for biomedical and pharmaceutical applications. Adv Mater Interfaces 8:2100809

    Article  CAS  Google Scholar 

  • Dong Z, Wang Q, Du Y (2006) Alginate/gelatin blend films and their properties for drug controlled release. J Membr Sci 280:37–44

    Article  CAS  Google Scholar 

  • Dvir-Ginzberg M, Gamlieli-Bonshtein I, Agbaria R, Cohen S (2003) Liver tissue engineering within alginate scaffolds: effects of cell-seeding density on hepatocyte viability, morphology, and function. Tissue Eng 9:757–766

    Article  CAS  Google Scholar 

  • Espevik T, Otterlei M, Skjak-Braek G, Ryan L, Wright SD, Sundan A (1993) The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. Eur J Immunol 23(1):255–261. https://doi.org/10.1002/eji.1830230140

    Article  CAS  Google Scholar 

  • Flores C, Diaz-Barrera A, Martinez F, Galindo E, Pena C (2014) Role of oxygen in the polymerization and de-polymerization of alginate produced by azotobacter vinelandii. J Chem Technol Biotechnol 90:356–365

    Article  Google Scholar 

  • Frent O, Duteanu N, Teusdea A, Ciocan S, Vicas L, Tunde J, Muresan M, Pallag A, Paula I, Marian E (2022) Preparation and characterization of chitosan-alginate microspheres loaded with quercetin. Polymers 14:490

    Article  CAS  Google Scholar 

  • Fu S, Thacker A, Sperger DM, Boni RL, Buckner IS, Velankar S, Munson EJ, Block LH (2011) Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties. AAPS PharmSciTech 12(2):453–460. https://doi.org/10.1208/s12249-011-9587-0

    Article  CAS  Google Scholar 

  • Fukuda H, Kikuchi Y (1977) Polyelectrolyte complexes of sodium dextran sulfate with chitosan. Die Makromolekulare Chemie: Macromol Chem Phys 178(10):2895–2899

    Article  CAS  Google Scholar 

  • Ge L, Li Z, Han M, Wang Y, Li X, Mu C, Li D (2022) Antibacterial dialdehyde sodium alginate-polylysine microspheres for fruit preservation. Food Chem 387:132885

    Article  CAS  Google Scholar 

  • George M, Abraham T (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114:1–14

    Article  CAS  Google Scholar 

  • Gill AS, Deol PK, Kaur IP (2019) An update on the use of alginate in additive biofabrication techniques. Curr Pharm Des 25(11):1249–1264. https://doi.org/10.2174/1381612825666190423155835

    Article  CAS  Google Scholar 

  • Goswami S, Bajpai J, Bajpai AK (2014) Calcium alginate nanocarriers as possible vehicles for oral delivery of insulin. J Exp Nanosci 9:337–356

    Article  CAS  Google Scholar 

  • Gowri M, Latha N, Suganya K, Murugan M, Rajan M (2021) Calcium alginate nanoparticle crosslinked phosphorylated polyallylamine to the controlled release of clindamycin for osteomyelitis treatment. Drug Dev Ind Pharm 47(2):280–291. https://doi.org/10.1080/03639045.2021.1879835

    Article  CAS  Google Scholar 

  • Grant GT, Morris ER, Rees DA, Smith PJ, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32:195–198

    Article  CAS  Google Scholar 

  • Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B (2020) Tissue engineering and regenerative medicine: achievements, future, and sustainability in Asia. Front Bioeng Biotechnol 8:83

    Article  Google Scholar 

  • Hari PR, Chandy T, Sharma CP (1996) Chitosan/calcium alginate microcapsules for intestinal delivery of nitrofurantoin. J Microencapsul 13(3):319–329. https://doi.org/10.3109/02652049609026019

    Article  CAS  Google Scholar 

  • Hariyadi DM, Islam N (2020) Current status of alginate in drug delivery. Adv Pharmacol Pharm Sci 2020:8886095

    CAS  Google Scholar 

  • Hegge AB, Andersen T, Melvik JE, Bruzell E, Kristensen S, Tonnesen HH (2011) Formulation and bacterial phototoxicity of curcumin loaded alginate foams for wound treatment applications: studies on curcumin and curcuminoides XLII. J Pharm Sci 100:174–185

    Article  CAS  Google Scholar 

  • Hermanto D, Mudasir M, Siswanta D, Kuswandi B, Ismillayli N (2019) Polyelectrolyte complex (PEC) of the alginate-chitosan membrane for immobilizing urease. J Math Fund Sci 51:309–319

    Article  CAS  Google Scholar 

  • Hu Y, Yang T, Hu X (2012) Novel polysaccharides-based nanoparticle carriers prepared by polyelectrolyte complexation for protein drug delivery. Polym Bull 68:1183–1199

    Article  CAS  Google Scholar 

  • Hu Y, Zheng M, Dong X, Zhao D, Cheng H, Xiao X (2015) Preparation and characterization of alginate-hyaluronic acid-chitosan based composite gel beads. J Wuhan Univ Technol Mater Sci Ed 30:1297–1303

    Article  CAS  Google Scholar 

  • Hu Y, Peng J, Ke L, Zhao D, Zhao H, Xiao X (2016) Alginate/carboxymethyl chitosan composite gel beads for oral drug delivery. J Polym Res 23:129

    Article  Google Scholar 

  • Hu C, Lu W, Mata A, Nishinari K, Fang Y (2021) Ions-induced gelation of alginate: mechanisms and applications. Int J Biol Macromol 177:578–588

    Article  CAS  Google Scholar 

  • Hunt N, Shelton R, Henderson D, Grover L (2012) Calcium-alginate hydrogel-encapsulated fibroblasts provide sustained release of vascular endothelial growth factor. Tissue Eng Part A 19:905–914

    Article  Google Scholar 

  • Idota Y, Kogure Y, Kato T, Yano K, Arakawa H, Miyajima C, Kasahara F, Ogihara T (2016) Relationship between physical parameters of various metal ions and binding affinity for alginate. Biol Pharm Bull 39:1893–1896

    Article  CAS  Google Scholar 

  • Integra LifeSciences (2022) https://www.woundsource.com/product/algicell-agantimicrobial-alginate-dressing. Accessed 21 Oct 2022

  • Jaafar HMM, Hamid AK (2019) Chitosan-coated alginate nanoparticles enhanced absorption profile of insulin via oral administration. Curr Drug Deliv 16:672–686

    Article  CAS  Google Scholar 

  • Jeganathan B, Prakya V (2015) Interpolyelectrolyte complexes of eudragit® EPO with hypromellose acetate succinate and eudragit® EPO with hypromellose phthalate as potential carriers for oral controlled drug delivery. AAPS PharmSciTech 16:878–888

    Article  CAS  Google Scholar 

  • Jin L, Qi H, Gu X, Zhang X, Zhang Y, Mao S (2020) Effect of sodium alginate type on drug release from chitosan-sodium alginate-based in situ film-forming tablets. AAPS PharmSciTech 21(2):55. https://doi.org/10.1208/s12249-019-1549-y

    Article  CAS  Google Scholar 

  • Joseph I, Venkataram S (1995) Indomethacin sustained release from alginate-gelatin or pectin-gelatin coacervates. Int J Pharm 126:161–168

    Article  CAS  Google Scholar 

  • Kamath KR, Park K, Sugbrick J, Boylen JC (1994) Encyclopedia of pharmaceutical technology. Marcel Dekker, New York

    Google Scholar 

  • Kesavan K, Nath G, Pandit JK (2010) Sodium alginate based mucoadhesive system for gatifloxacin and its in vitro antibacterial activity. Sci Pharm 78:941–957

    Article  CAS  Google Scholar 

  • Khromova Y (2006) The effect of chlorides on alginate gelation in the presence of calcium sulfate. Colloid J 68:115–119

    Article  CAS  Google Scholar 

  • Kikuchi Y, Fukuda H (1977) Polyelectrolyte complex consisting sodium dextran sulfate and 2-(diethylamino)ethyldextran hydrochloride. Nippon Kagaku Kaishi 1977:1051–1054

    Article  Google Scholar 

  • Kilicarslan M, Ilhan M, Inal O, Orhan K (2018) Preparation and evaluation of clindamycin phosphate loaded chitosan/alginate polyelectrolyte complex film as mucoadhesive drug delivery system for periodontal therapy. Eur J Pharm Sci 123:441–451. https://doi.org/10.1016/j.ejps.2018.08.007

    Article  CAS  Google Scholar 

  • Kim YJ, Park HG, Yang YL, Yoon Y, Kim S, Oh E (2005) Multifunctional drug delivery system using starch-alginate beads for controlled release. Biol Pharm Bull 28(2):394–397. https://doi.org/10.1248/bpb.28.394

    Article  CAS  Google Scholar 

  • Kim ES, Lee J-S, Lee HG (2016) Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique. Food Sci Biotechnol 25:1337–1343

    Article  CAS  Google Scholar 

  • Kucharska M, Niekraszewicz A, Ciechańska D, Gąsiorowski T, Struszczyk M, Pluta A, Rogaczewska A, Witczak E, Ploszaj I, Gulbas-Diaz A, Fortuniak K, Tarkowska S (2011) Tromboguard - first aid wound dressing. Progr Chem Appl Chitin Deriv 16:121–130

    Google Scholar 

  • Kulig D, Zimoch-Korzycka A, Jarmoluk A, Marycz K (2016) Study on alginate-chitosan complex formed with different polymers ratio. Polymers 8:167

    Article  Google Scholar 

  • Kumar K, Dhawan N, Sharma H, Vaidya S, Vaidya B (2014) Bioadhesive polymers: novel tool for drug delivery. Artif Cells Nanomed Biotechnol 42(4):274–283. https://doi.org/10.3109/21691401.2013.815194

    Article  CAS  Google Scholar 

  • Kutlusoy T, Oktay B, Kayaman-Apohan N, Suleymanoglu M, Erdem S (2017) Chitosan-co-hyaluronic acid porous cryogels and their application in tissue engineering. Int J Biol Macromol 103:366–378

    Article  CAS  Google Scholar 

  • Labowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I (2021) A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials (Basel, Switzerland) 14:858

    Article  CAS  Google Scholar 

  • Lankalapalli S, Kolapalli VRM (2009) Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci 71:481–487

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  Google Scholar 

  • Lefnaoui S, Moulai-Mostefa N, Yahoum MM, Gasmi SN (2018) Design of antihistaminic transdermal films based on alginate-chitosan polyelectrolyte complexes: characterization and permeation studies. Drug Dev Ind Pharm 44:432–443

    Article  CAS  Google Scholar 

  • Leick S, Kemper A, Rehage H (2011) Alginate/poly-l-lysine capsules: mechanical properties and drug release characteristics. Soft Matter 7:6684–6694

    Article  CAS  Google Scholar 

  • Li P, Dai Y-N, Zhang J-P, Wang A-Q, Wei Q (2008) Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci 4:221–228

    CAS  Google Scholar 

  • Li L, Wang L, Shao Y, Ni R, Zhang T, Mao S (2013) Drug release characteristics from chitosan-alginate matrix tablets based on the theory of self-assembled film. Int J Pharm 450(1-2):197–207. https://doi.org/10.1016/j.ijpharm.2013.04.052

    Article  CAS  Google Scholar 

  • Lin S-F, Chen Y-C, Chen R-N, Chen L-C, Ho H-O, Tsung Y-H, Sheu M-T, Liu D-Z (2016) Improving the stability of astaxanthin by microencapsulation in calcium alginate beads. PLoS One 11:e0153685

    Article  Google Scholar 

  • Lopez-Mendez TB, Santos-Vizcaino E, Pedraz JL, Orive G, Hernandez RM (2021) Cell microencapsulation technologies for sustained drug delivery: latest advances in efficacy and biosafety. J Control Release 335:619–636

    Article  CAS  Google Scholar 

  • Lv X, Zhang W, Liu Y, Zhao Y, Zhang J, Hou M (2018) Hygroscopicity modulation of hydrogels based on carboxymethyl chitosan/alginate polyelectrolyte complexes and its application as pH-sensitive delivery system. Carbohydr Polym 198:86–93

    Article  CAS  Google Scholar 

  • Ma F, Pang X, Tang B (2019) Alginate/chondroitin sulfate based hybrid hydrogel with different molecular weight and its capacity to regulate chondrocytes activity. Carbohydr Polym 206:229–237

    Article  CAS  Google Scholar 

  • Machida-Sano I, Ogawa S, Ueda H, Kimura Y, Satoh N, Namiki H (2012) Effects of composition of iron-cross-linked alginate hydrogels for cultivation of human dermal fibroblasts. Int J Biomater 2012:820513

    Article  Google Scholar 

  • Malakar J, Nayak A, Das A (2013) Modified starch (cationized)-alginate beads containing aceclofenac: formulation optimization using central composite design. Starch - Starke 65:603–612

    Article  CAS  Google Scholar 

  • Mandal S, Kumar S, Krishnamoorthy B, Basu S (2010) Development and evaluation of calcium alginate beads prepared by sequential and simultaneous methods. Braz J Pharm Sci 46:785–793

    Article  CAS  Google Scholar 

  • Martau GA, Mihai M, Vodnar DC (2019) The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesiveness, and biodegradability. Polymers 11:1837

    Article  CAS  Google Scholar 

  • Massana Roquero D, Bollella P, Katz E, Melman A (2021) Controlling porosity of calcium alginate hydrogels by interpenetrating polyvinyl alcohol-diboronate polymer network. ACS Appl Polym Mater 3:1499

    Article  CAS  Google Scholar 

  • Mateescu MA, Ispas-Szabo P, Assaad E (2015) 4 - Chitosan-based polyelectrolyte complexes as pharmaceutical excipients. In: Mateescu MA, Ispas-Szabo P, Assaad E (eds) Controlled drug delivery. Woodhead Publishing, London, pp 127–161

    Google Scholar 

  • Mathews S (2017) Microencapsulation of probiotics by calcium alginate and gelatin and evaluation of its survival in simulated human gastro-intestinal condition. Int J Curr Microbiol App Sci 6:2080–2087

    Article  CAS  Google Scholar 

  • Meng X, Tian F, Yang J, He C-N, Xing N, Li F (2010) Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J Mater Sci Mater Med 21:1751–1759

    Article  CAS  Google Scholar 

  • Mishra D, Gilhotra R (2008) Design and characterization of bioadhesive in-situ gelling ocular inserts of gatifloxacin sesquihydrate. Daru 16:1–8

    CAS  Google Scholar 

  • Mladenovska K, Slaveska R, Janevik E, Ristoski T, Pavlova M, Kavrakovski Z, Glavas Dodov M, Goracinova K (2007) Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. Int J Pharm 342:124–136

    Article  CAS  Google Scholar 

  • Morch YA, Holtan S, Donati I, Strand B, Skjak-Braek G (2008) Mechanical properties of C-5 epimerized alginates. Biomacromolecules 9:2360–2368

    Article  CAS  Google Scholar 

  • Motwani S, Chopra S, Talegaonkar S, Kohli K, Ahmad F, Khar R (2008) Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in-vitro charcterisation. Eur J Pharm Biopharm 68:513–525

    CAS  Google Scholar 

  • Mukhopadhyay P, Maity S, Mandal S, Chakraborti AS, Prajapati AK, Kundu PP (2018) Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr Polym 182:42–51

    Article  CAS  Google Scholar 

  • Mulia K, Singarimbun AC, Krisanti EA (2020) Optimization of chitosan-alginate microparticles for delivery of mangostins to the colon area using box-behnken experimental design. Int J Mol Sci 21:873

    Article  CAS  Google Scholar 

  • Muller M, Keller B, Frohlich J, Poeschla S, Torger B (2011) Polyelectrolyte complex nanoparticles of poly (ethyleneimine) and poly (acrylic acid): preparation and applications. Polymers 3:762–778

    Article  Google Scholar 

  • Muzzarelli R, Muzzarelli C (2005) Chitosan chemistry: relevance to the biomedical sciences. In: Heinze T (ed) Polysaccharides I. Advances in polymer science, vol 186. Springer, Berlin, pp 151–209

    Google Scholar 

  • Nayak A, Hasnain M, Beg S, Alam M (2010) Mucoadhesive beads of gliclazide: design, development and evaluation. Sci Asia 36:319–325

    Article  CAS  Google Scholar 

  • Nesamony J, Singh P, Nada S, Shah Z, Kolling B (2012) Calcium alginate nanoparticles synthesized through a novel interfacial cross-linking method as a potential protein drug delivery system. J Pharm Sci 101:2177–2184

    Article  CAS  Google Scholar 

  • Niculescu A-G, Grumezescu AM (2022) Applications of chitosan-alginate-based nanoparticles-an up-to-date review. Nanomaterials (Basel, Switzerland) 12:186

    Article  CAS  Google Scholar 

  • Nikolova D, Simeonov M, Tzachev C, Apostolov A, Christov L, Vassileva E (2021) Polyelectrolyte complexes of chitosan and sodium alginate as a drug delivery system for diclofenac sodium. Polym Int 71:668–678

    Article  Google Scholar 

  • Oh G-W, Nam SY, Heo S-J, Kang D-H, Jung W-K (2020) Characterization of ionic cross-linked composite foams with different blend ratios of alginate/pectin on the synergistic effects for wound dressing application. Int J Biol Macromol 156:1565–1573

    Article  CAS  Google Scholar 

  • Olivas GI, Barbosa-Canovas GV (2008) Alginate-calcium films: water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT Food Sci Technol 41:359–366

    Article  CAS  Google Scholar 

  • Omer AM, Ahmed MS, El-Subruiti GM, Khalifa RE, Eltaweil AS (2021) pH-sensitive alginate/carboxymethyl chitosan/aminated chitosan microcapsules for efficient encapsulation and delivery of diclofenac sodium. Pharmaceutics 13:338

    Article  CAS  Google Scholar 

  • Onal SI, Zihnioglu F (2002) Encapsulation of insulin in chitosan-coated alginate beads: oral therapeutic peptide delivery. Artif Cells Blood Substit Immobil Biotechnol 30:229–237

    Article  Google Scholar 

  • Onyido I, Sha’ato R, Nnamonu L (2012) Environmentally friendly formulations of trifluralin based on alginate modified starch. J Environ Prot 3(9):1085–1093

    Article  CAS  Google Scholar 

  • Orive G, Tam SK, Pedraz JL, Halle J-P (2006) Biocompatibility of alginate-poly-l-lysine microcapsules for cell therapy. Biomaterials 27:3691–3700

    Article  CAS  Google Scholar 

  • Oshi MA, Lee J, Kim J, Hasan N, Im E, Jung Y, Yoo JW (2021) pH-responsive alginate-based microparticles for colon-targeted delivery of pure cyclosporine a crystals to treat ulcerative colitis. Pharmaceutics 13(9):1412. https://doi.org/10.3390/pharmaceutics13091412

    Article  CAS  Google Scholar 

  • Oveissi F, Tavakoli N, Minaiyan M, Mofid MR, Taheri A (2020) Alginate hydrogel enriched with ambystoma mexicanum epidermal lipoxygenase-loaded pectin nanoparticles for enhanced wound healing. J Biomater Appl 34:1171–1187

    Article  CAS  Google Scholar 

  • Pardeshi C, Kulkarni A, Vanjari Y, Sancheti K, Patel H, Belgamwar V, Surana S (2016) Polyelectrolyte complexes: mechanisms, critical experimental aspects, and applications. Artif Cells Nanomed Biotechnol Int J 44:1615–1625

    Article  Google Scholar 

  • Park SB, Kang HW, Haam S, Park HY, Kim WS (2004) Ca-alginate microspheres encapsulated in chitosan beads. J Microencapsul 21(5):485–497. https://doi.org/10.1080/02652040410001729269

    Article  CAS  Google Scholar 

  • Patel N, Lalwani D, Gollmer S, Injeti E, Sari Y, Nesamony J (2016) Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Progr Biomater 5:117–133

    Article  CAS  Google Scholar 

  • Patil T, Saha S, Biswas A (2017) Preparation and characterization of HAp coated chitosan-alginate PEC porous scaffold for bone tissue engineering. Macromol Symp 376:1600205

    Article  Google Scholar 

  • Pei HN, Chen XG, Li Y, Zhou HY (2008) Characterization and ornidazole release in vitro of a novel composite film prepared with chitosan/poly(vinyl alcohol)/alginate. J Biomed Mater Res A 85(2):566–572. https://doi.org/10.1002/jbm.a.31223

    Article  CAS  Google Scholar 

  • Pereira RB, Carvalho A, Vaz DC, Gil MH, Mendes A, Bãirtolo, P. (2013) Development of novel alginate based hydrogel films for wound healing applications. Int J Biol Macromol 52:221–230

    Article  CAS  Google Scholar 

  • Peric-Hassler L, Hunenberger P (2010) Interaction of alginate single-chain polyguluronate segments with mono- and divalent metal cations: a comparative molecular dynamics study. Mol Simul 36:778–795

    Article  CAS  Google Scholar 

  • Pires AL, Motta L, Dias A, de Sousa H, Moraes ÃN, Braga M (2018) Towards wound dressings with improved properties: effects of poly(dimethylsiloxane) on chitosan-alginate films loaded with thymol and beta-carotene. Mater Sci Eng C 93:595–605

    Article  CAS  Google Scholar 

  • Qin Y (2008) Alginate fibres: an overview of the production processes and applications in wound management. Polym Int 57:171–180

    Article  CAS  Google Scholar 

  • Rahaiee S, Hashemi M, Shojaosadati S, Moini S, Razavi S (2017) Nanoparticles based on crocin loaded chitosan-alginate biopolymers: antioxidant activities, bioavailability and anticancer properties. Int J Biol Macromol 99:401–408

    Article  CAS  Google Scholar 

  • Ramos PE, Antoìnio AV, Joseì AT, Lorenzo MP, Marta MA, Miguel AC, Pedro S (2018) Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocoll 77:8–16

    Article  CAS  Google Scholar 

  • Ravisankar S, Dey N, Francis AP, Pandian K, Devasena T (2015) Preparation and characterization of gatifloxacin encapsulated chitosan nanoparticles for ocular drug delivery. Int J Innovative Res Sci Eng Technol 4(1):28–33

    Google Scholar 

  • Reddy S (2021) Alginates—a seaweed product: its properties and applications. In: Deniz I, Imamoglu E, Keskin-Gundogdu T (eds) Properties and applications of alginates. IntechOpen, London, pp 19–38

    Google Scholar 

  • Ren Y, Xie H, Liu X, Bao J, Yu W, Ma X (2016) Comparative investigation of the binding characteristics of poly-L-lysine and chitosan on alginate hydrogel. Int J Biol Macromol 84:135–141. https://doi.org/10.1016/j.ijbiomac.2015.12.008

    Article  CAS  Google Scholar 

  • Sachan N, Pushkar S, Jha A, Bhattcharya A (2009) Sodium alginate: the wonder polymer for controlled drug delivery. J Pharm Res 2:1191–1199

    Google Scholar 

  • Sahoo DR, Biswal T (2021) Alginate and its application to tissue engineering. SN Appl Sci 3:30

    Article  CAS  Google Scholar 

  • Sanchez-Ballester N, Soulairol I, Bataille B, Sharkawi T (2019) Flexible heteroionic calcium-magnesium alginate beads for controlled drug release. Carbohydr Polym 207:224–229

    Article  CAS  Google Scholar 

  • Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB (2007) Reversed chitosanâalginate polyelectrolyte complex for stability improvement of alpha-amylase: optimization and physicochemical characterization. Eur J Pharm Biopharm 65:215–232

    Article  CAS  Google Scholar 

  • Satishbabu BK, Sandeep VR, Ravi RB, Shrutinag R (2010) Formulation and evaluation of floating drug delivery system of famotidine. Indian J Pharm Sci 72:738–744

    Article  CAS  Google Scholar 

  • Schmitt A, Rodel P, Anamur C, Seeliger C, Imhoff AB, Herbst E, Vogt S, van Griensven M, Winter G, Engert J (2015) Calcium alginate gels as stem cell matrix-making paracrine stem cell activity available for enhanced healing after surgery. PLoS One 10:e0118937

    Article  Google Scholar 

  • Segale L, Giovannelli L, Mannina P, Pattarino F (2016) Calcium alginate and calcium alginate-chitosan beads containing celecoxib solubilized in a self-emulsifying phase. Scientifica 2016:5062706

    Article  Google Scholar 

  • Sepúlveda-Rivas S, Fritz HF, Valenzuela C, Santiviago CA, Morales JO (2019) Development of novel EE/alginate polyelectrolyte complex nanoparticles for lysozyme delivery: physicochemical properties and in vitro safety. Pharmaceutics 11:103

    Article  Google Scholar 

  • Silva CM, Ribeiro ANJ, Figueiredo M, Ferreira D, Veiga F (2006) Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. AAPS J 7:E903–E913

    Article  Google Scholar 

  • Singh M, Gill AS, Deol PK, Agrawal A, Sidhu SS (2022) Drug eluting titanium implants for localised drug delivery. J Mater Res. https://doi.org/10.1557/s43578-022-00609-y

  • Somo SI, Khanna O, Brey EM (2017) Alginate microbeads for cell and protein delivery. Methods Mol Biol 1479:217–224. https://doi.org/10.1007/978-1-4939-6364-5_17

    Article  CAS  Google Scholar 

  • Sonavane G, Devarajan P (2007) Preparation of alginate nanoparticles using eudragit E100 as a new complexing agent: development, in-vitro, and in-vivo evaluation. J Biomed Nanotechnol 3:160–169

    Article  CAS  Google Scholar 

  • Sorasitthiyanukarn FN, Muangnoi C, Ratnatilaka Na Bhuket P, Rojsitthisak P, Rojsitthisak P (2018) Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Mater Sci Eng C 93:178–190

    Article  CAS  Google Scholar 

  • Sorasitthiyanukarn FN, Ratnatilaka Na Bhuket P, Muangnoi C, Rojsitthisak P, Rojsitthisak P (2019) Chitosan/alginate nanoparticles as a promising carrier of novel curcumin diethyl diglutarate. Int J Biol Macromol 131:1125–1136

    Article  CAS  Google Scholar 

  • Sriamornsak P, Thirawong N, Korkerd K (2007) Swelling, erosion and release behavior of alginate-based matrix tablets. Eur J Pharm Biopharm 66:435–450

    Article  CAS  Google Scholar 

  • Sultana Y, Mall S, Maurya P, Kumar D, Das M (2009) Preparation and in vitro characterization of diltiazem hydrochloride loaded alginate microspheres. Pharm Dev Technol 14:321–331

    Article  CAS  Google Scholar 

  • Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials (Basel, Switzerland) 6:1285–1309

    Article  CAS  Google Scholar 

  • Sun CK, Ke CJ, Lin YW, Lin FH, Tsai TH, Sun JS (2021) Transglutaminase cross-linked gelatin-alginate-antibacterial hydrogel as the drug delivery-coatings for implant-related infections. Polymers (Basel) 13(3):414. https://doi.org/10.3390/polym13030414

    Article  CAS  Google Scholar 

  • Swain DS, Behera A, Beg S, Patra C, Dinda S, Sruti J, Rao M (2012) Modified alginate beads for mucoadhesive drug delivery system: an updated review of patents. Recent Pat Drug Deliv Formul 6:259–277

    Article  CAS  Google Scholar 

  • Szekalska M, Pucilowska A, Szymanska E, Ciosek P, Winnicka K (2016) Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016:7697031

    Article  Google Scholar 

  • Szekalska M, Sosnowska K, Czajkowska-Koånik A, Winnicka K (2018) Calcium chloride modified alginate microparticles formulated by the spray drying process: a strategy to prolong the release of freely soluble drugs. Materials (Basel) 11(9):1522. https://doi.org/10.3390/ma11091522

    Article  CAS  Google Scholar 

  • Tavakol M, Vasheghani-Farahani E, Dolatabadi-Farahani T, Hashemi-Najafabadi S (2009) Sulfasalazine release from alginate-N, O-carboxymethyl chitosan gel beads coated by chitosan. Carbohydr Polym 77:326–330

    Article  CAS  Google Scholar 

  • Teboho M, Luyt A (2017) Electrospun alginate nanofibres impregnated with silver nanoparticles: preparation, morphology and antibacterial properties. Carbohydr Polym 165:304–312

    Article  Google Scholar 

  • Thai H, Thuy Nguyen C, Thi Thach L, Thi Tran M, Duc Mai H, Thi Thu Nguyen T, Duc Le G, Van Can M, Dai Tran L, Long Bach G, Ramadass K, Sathish CI, Van Le Q (2020) Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo. Sci Rep 10:909

    Article  CAS  Google Scholar 

  • Thomas D, Nair VV, Latha MS, Thomas KK (2019) Theoretical and experimental studies on theophylline release from hydrophilic alginate nanoparticles. Future J Pharm Sci 5:2

    Article  Google Scholar 

  • Thomas D, Mathew N, Nath MS (2021) Starch modified alginate nanoparticles for drug delivery application. Int J Biol Macromol 173:277–284

    Article  CAS  Google Scholar 

  • Timmons JP (2008) ActivHeal AquaFiber®: a new soft, conformable highly-absorbent dressing for use with chronic wounds. Wounds UK 4(3):88–91

    Google Scholar 

  • Tonnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28(6):621–630. https://doi.org/10.1081/ddc-120003853

    Article  CAS  Google Scholar 

  • Unagolla JM, Jayasuriya AC (2018) Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur J Pharm Sci 114:199–209

    Article  CAS  Google Scholar 

  • Valeron Bergh VJ, Johannessen E, Andersen T, Tonnesen HH (2017) Evaluation of porphyrin loaded dry alginate foams containing poloxamer 407 and β-cyclodextrin-derivatives intended for wound treatment. Pharm Dev Technol 23:761–770

    Article  Google Scholar 

  • Varaprasad K, Jayaramudu T, Kanikireddy V, Toro Aedo C, Sadiku R (2020) Alginate-based composite materials for wound dressing application: a mini review. Carbohydr Polym 236:116025

    Article  CAS  Google Scholar 

  • Wang Q, Zhang Newby B-M (2018) Layer-by-layer polyelectrolyte coating of alginate microgels for sustained release of sodium benzoate and zosteric acid. J Drug Deliv Sci Technol 46:46–54

    Article  Google Scholar 

  • Wang F-Q, Li P, Zhang J-P, Wang A-Q, Wei Q (2011) pH-sensitive magnetic alginate-chitosan beads for albendazole delivery. Pharm Dev Technol 16:228–236

    Article  CAS  Google Scholar 

  • Wang T, Zheng Y, Shi Y, Zhao L (2019) pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity. Drug Deliv Transl Res 9(1):227–239. https://doi.org/10.1007/s13346-018-00609-8

    Article  CAS  Google Scholar 

  • Wang H, Chen X, Wen Y, Li D, Sun X, Liu Z, Yan H, Lin Q (2022) A study on the correlation between the oxidation degree of oxidized sodium alginate on its degradability and gelation. Polymers 14(9):1679

    Article  CAS  Google Scholar 

  • Wittaya-Areekul S, Kruenate J, Prahsarn C (2006) Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone. Int J Pharm 312(1-2):113–118. https://doi.org/10.1016/j.ijpharm.2006.01.003

    Article  CAS  Google Scholar 

  • Witzler M, Vermeeren S, Kolevatov RO, Haddad R, Gericke M, Heinze T, Schulze M (2021) Evaluating release kinetics from alginate beads coated with polyelectrolyte layers for sustained drug delivery. ACS Appl Bio Mater 4:6719–6731

    Article  CAS  Google Scholar 

  • Xiao J, Zhu Y, Liu Y, Zeng Y, Xu F (2009) A composite coating of calcium alginate and gelatin particles on Ti6Al4V implant for the delivery of water soluble drug. J Biomed Mater Res B Appl Biomater 89B(2):543–550. https://doi.org/10.1002/jbm.b.31246

    Article  CAS  Google Scholar 

  • Yan XL, Khor E, Lim L (2001) Chitosan-alginate films prepared with chitosans of different molecular weights. J Biomed Mater Res 58:358–365

    Article  CAS  Google Scholar 

  • Yuan J, Guo L, Wang S, Liu D, Qin X, Zheng L, Tian C, Han X, Chen R, Yin R (2018) Preparation of self-assembled nanoparticles of ε-polylysine-sodium alginate: a sustained-release carrier for antigen delivery. Colloids Surf B Biointerfaces 171:406–412. https://doi.org/10.1016/j.colsurfb.2018.07.058

    Article  CAS  Google Scholar 

  • Yusif R, Abu Hashim I, El-Dahan M (2014) Some variables affecting the characteristics of Eudragit E-sodium alginate polyelectrolyte complex as a tablet matrix for diltiazem hydrochloride. Acta Pharm (Zagreb, Croatia) 64:89–104

    Article  CAS  Google Scholar 

  • Zhang M, Zhao X (2020) Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol 162:1414–1428

    Article  CAS  Google Scholar 

  • Zhang ZK, Li GY, Shi B (2006) Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J Soc Leather Technol Chem 90:23–28

    Google Scholar 

  • Zhang Y, Wei W, Lv P, Wang L, Ma G (2011) Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin. Eur J Pharm Biopharm 77(1):11–19. https://doi.org/10.1016/j.ejpb.2010.09.016

    Article  CAS  Google Scholar 

  • Zhang S, Li Z, Lin L, Zhang L, Wei C (2019) Starch components, starch properties and appearance quality of opaque kernels from rice mutants. Molecules (Basel, Switzerland) 24:4580

    Article  CAS  Google Scholar 

  • Zhang H, Cheng J, Ao Q (2021) Preparation of alginate-based biomaterials and their applications in biomedicine. Mar Drugs 19:264

    Article  CAS  Google Scholar 

  • Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J (2021) Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: current advances and perspectives. Bioact Mater 6:1878–1909

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Dr. Indu Pal Kaur and Dr. Parneet Kaur Deol acknowledge the financial assistance provided by DST SERB under the CRG Scheme (CRG/2019/002768).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu Pal Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deol, P.K., Kaur, A., Kooner, J.K., Gill, A.S., Singh, M., Kaur, I.P. (2023). Alginate Based Polyelectrolyte Complexes for Drug Delivery and Biomedical Applications. In: Jana, S., Jana, S. (eds) Alginate Biomaterial. Springer, Singapore. https://doi.org/10.1007/978-981-19-6937-9_8

Download citation

Publish with us

Policies and ethics