Skip to main content

Crosstalk of Ethylene and Salicylic Acid in the Amelioration of Toxic Effects of Heavy Metal Stress in Mustard

  • Chapter
  • First Online:
Plant Phenolics in Abiotic Stress Management

Abstract

Mustard is considered as a central crop all over the globe since it is a inexpensively important product. Plant toxicity caused by heavy metals (HMs) in agricultural fields results in a drop in yield. Using multiple ways targeting either ethylene production or the ethylene signaling system to manipulate ethylene in plants to cope with HM stress has yielded promising results. Recent advancements in ethylene study have revealed that ethylene is playing its role in a variety of vital physiological activities and metal stress tolerance in plants. The efficiency of endogenic ethylene level in plants beneath HM stress, based on our present understanding of ethylene and its regulatory actions, is thought to open the way for the growth and development of transgenic crops with enhanced HM tolerance in brassica. This research paper investigates ethylene synthesis and signal transduction in plant response to HM stress, as well as crosstalk between ethylene and other signaling molecules under extreme HM stress, and ways for modulating ethylene activity to advance HM resistance in brassica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2015) Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499

    Article  CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.], plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    Article  CAS  Google Scholar 

  • Alloway BJ (2012) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer, Heidelberg, pp 11–50

    Google Scholar 

  • Armas T, Pinto AP, de Varennes A, Mourato MP, Martins LL, Gonçalves MLS, Mota AM (2015) Comparison of cadmium-induced oxidative stress in Brassica juncea in soil and hydroponic cultures. Plant Soil 388(1):297–305

    Article  CAS  Google Scholar 

  • Arteca RN, Arteca JM (2007) Heavy-metal-induced ethylene production in Arabidopsis thaliana. J Plant Physiol 164:1480–1488. https://doi.org/10.1016/j.jplph.2006.09.006

    Article  CAS  Google Scholar 

  • Asgher M, Khan NA, Khan MIR, Fatma M, Masood A (2014) Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicol Environ Saf 106:54–61. https://doi.org/10.1016/j.ecoenv.2014.04.017

    Article  CAS  Google Scholar 

  • Bethke G, Unthan T, Uhrig JF, Pöschl Y, Gust AA, Scheel D, Lee J (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci U S A 106:8067–8072

    Article  CAS  Google Scholar 

  • Blankenship SM, Dole JM (2003) 1-Methylcyclopropene: a review. Postharvest Biol Technol 28:1–25

    Article  CAS  Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46:189–214

    Article  CAS  Google Scholar 

  • Brunetti G, Farrag K, Rovira PS, Nigro F, Senesi N (2011) Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma 160(3–4):517–523

    Article  CAS  Google Scholar 

  • Bueso E, Alejandro S, Carbonell P, Perez-Amador MA, Fayos J, Bellés JM, Serrano R (2007) The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross-talk between oxidative stress and ethylene. Plant J 52(6):1052–1065

    Article  CAS  Google Scholar 

  • Cao S, Chen Z, Liu G, Jiang L, Yuan H, Ren G, Ma X (2009) The Arabidopsis ethylene-insensitive 2 gene is required for lead resistance. Plant Physiol Biochem 47(4):308–312

    Article  CAS  Google Scholar 

  • Cao F, Chen F, Sun H, Zhang G, Chen Z-H, Wu F (2014) Genomewide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genomics 15:611. https://doi.org/10.1186/1471-2164-15-611

    Article  CAS  Google Scholar 

  • Chen YA, Chi WC, Trinh NN, Huang LY, Chen YC, Cheng KT, Huang HJ (2014) Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings. PLoS One 9(5):e95163

    Article  Google Scholar 

  • Chmielowska-Bak J, Lefèvre I, Lutts S, Deckert J (2013) Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol 170:1585–1594. https://doi.org/10.1016/j.jplph.2013.06.019

    Article  CAS  Google Scholar 

  • Clark KL, Larsen PB, Wang X, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci U S A 95:5401–5406

    Article  CAS  Google Scholar 

  • Clemente R, Walker DJ, Bernal MP (2005) Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): the effect of soil amendments. Environ Pollut 138(1):46–58

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  Google Scholar 

  • Cuypers A, Smeets K, Vangronsveld J (2009) Heavy metal stress in plants. In: Hirt H (ed) Plant stress biology. From genomics to systems biology. Wiley-VCH Verlagsgesellschaft GmbH & Co. KGaA, Weinheim, pp 161–178

    Chapter  Google Scholar 

  • De Grauwe L, Dugardeyn J, Van Der Straeten D (2008) Novel mechanisms of ethylene-gibberellin crosstalk revealed by the gai eto2-1 double mutant. Plant Signal Behav 3:1113–1115

    Article  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98:13454–13459

    Article  CAS  Google Scholar 

  • Dolferus R (2014) To grow or not to grow: a stressful decision for plants. Plant Sci 229:247–261. https://doi.org/10.1016/j.plantsci.2014.10.002

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26(3):776–781

    Article  CAS  Google Scholar 

  • Ebel J, Cosio EG (1994) Elicitors of plant defense responses. Int Rev Cytol 148:1–36

    Article  CAS  Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W et al (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf 106:164–172

    Article  CAS  Google Scholar 

  • Feigl G, Kumar D, Lehotai N, Tugyi N, Molnár Á, Ördög A, Kolbert Z (2013) Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicol Environ Saf 94:179–189

    Article  CAS  Google Scholar 

  • Feng X, Apelbaum A, Sisler EC, Goren R (2000) Control of ethylene responses in avocado fruit with 1-methylcyclopropene. Postharvest Biol Technol 20:143–150

    Article  CAS  Google Scholar 

  • Fu SF, Chen PY, Nguyen QTT, Huang LY, Zeng GR, Huang TL, Huang HJ (2014) Transcriptome profiling of genes and pathways associated with arsenic toxicity and tolerance in Arabidopsis. BMC Plant Biol 14(1):1–16

    Article  Google Scholar 

  • Ghani A, Khan I, Ahmed I, Mustafa I, Abd-Ur R, Muhammad N (2015) Amelioration of lead toxicity in Pisum sativum (L.) by foliar application of salicylic acid. J Environ Anal Toxicol 5:10–4172

    Google Scholar 

  • Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Zhou W (2015) Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–164

    Article  CAS  Google Scholar 

  • Gisbert C, Clemente R, Navarro-Avino J, Baixauli C, Ginér A, Serrano R, Bernal MP (2006) Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ Exp Bot 56(1):19–27

    Article  CAS  Google Scholar 

  • Gondor OK, Pál M, Darkó É, Janda T, Szalai G (2016) Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize (Zea mays L.). PLoS One 11:e0160157. https://doi.org/10.1371/journal.pone.0160157

    Article  CAS  Google Scholar 

  • Grimmig B, Gonzalez-Perez MN, Leubner-Metzger G, Vögeli-Lange R, Meins F, Hain R et al (2003) Ozone-induced gene expression occurs via ethylene-dependent and-independent signalling. Plant Mol Biol 51(4):599–607

    Article  CAS  Google Scholar 

  • Grispen VM, Nelissen HJ, Verkleij JA (2006) Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ Pollut 144(1):77–83

    Article  CAS  Google Scholar 

  • Groppa MD, Benavides MP, Tomaro ML (2003) Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Sci 164:293–299. https://doi.org/10.1016/S0168-9452(02)00412-0

    Article  CAS  Google Scholar 

  • Guan C, Ji J, Wu D, Li X, Jin C, Guan W, Wang G (2015) The glutathione synthesis may be regulated by cadmium-induced endogenous ethylene in Lycium chinense, and overexpression of an ethylene responsive transcription factor gene enhances tolerance to cadmium stress in tobacco. Mol Breed 35(5):1–13

    Article  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161. https://doi.org/10.1007/s11356-013-1485-4

    Article  CAS  Google Scholar 

  • Hahn MG (1996) Microbial elicitors and their receptors in plants. Annu Rev Phytopathol 34:387–412

    Article  CAS  Google Scholar 

  • Hahn A, Harter K (2009) Mitogen-activated protein kinase cascades and ethylene: signaling, biosynthesis, or both? Plant Physiol 149:1207–1210

    Article  CAS  Google Scholar 

  • Hale KL, McGrath SP, Lombi E, Stack SM, Terry N, Pickering IJ, Pilon-Smits EA (2001) Molybdenum sequestration in Brassica species. A role for anthocyanins? Plant Physiol 126(4):1391–1402

    Article  CAS  Google Scholar 

  • Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266. https://doi.org/10.1016/j.pbi.2009.05.006

    Article  CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    Article  CAS  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19(2–3):125–140

    Article  CAS  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette M-LM, Cuine S (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765. https://doi.org/10.1016/j.biochi.2006.04.018

    Article  CAS  Google Scholar 

  • Hernandez-Allica J, Becerril JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152(1):32–40

    Article  CAS  Google Scholar 

  • Herrero EM, Lopez-Gonzalvez A, Ruiz MA, Lucas-Garcia JA, Barbas C (2003) Uptake and distribution of zinc, cadmium, lead and copper in Brassica napus var. oleifera and Helianthus annus grown in contaminated soils. Int J Phytoremediation 5(2):153–167

    Article  CAS  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 57:196–204

    Article  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  CAS  Google Scholar 

  • Huang JY, Lin CH (2003) Cold water treatment promotes ethylene production and dwarfing in tomato seedlings. Plant Physiol Biochem 41:283–288

    Article  CAS  Google Scholar 

  • Hussein M, Balbaa L, Gaballah M (2007) Salicylic acid and salinity effects on growth of maize plants. Res J Agric Biol Sci 3:321–328

    CAS  Google Scholar 

  • Iakimova ET, Woltering EJ, Kapchina-Toteva VM, Harren FJM, Cristescu SM (2008) Cadmium toxicity in cultured tomato cells—role of ethylene, proteases and oxidative stress in cell death signaling. Cell Biol Int 32:1521–1529. https://doi.org/10.1016/j.cellbi.2008.08.021

    Article  CAS  Google Scholar 

  • Iqbal N, Trivellini A, Masood A, Ferrante A, Khan NA (2013) Current understanding on ethylene signaling in plants: the influence of nutrient availability. Plant Physiol Biochem 73:128–138. https://doi.org/10.1016/j.plaphy.2013.09.011

    Article  CAS  Google Scholar 

  • Irtelli B, Navari-Izzo F (2006) Influence of sodium nitrilotriacetate (NTA) and citric acid on phenolic and organic acids in Brassica juncea grown in excess of cadmium. Chemosphere 65(8):1348–1354

    Article  CAS  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182. https://doi.org/10.1093/bmb/ldg032

    Article  Google Scholar 

  • Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci 109(47):19486–19491

    Article  CAS  Google Scholar 

  • Kacperska A (2004) Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiol Plant 122:159–168. https://doi.org/10.1111/j.0031-9317.2004.00388.x

    Article  CAS  Google Scholar 

  • Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T (2010) Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci Hortic (Amsterdam) 126:402–407

    Article  CAS  Google Scholar 

  • Khademi S, Khavari-Nejad RA, Saadatmand S, Najafi F (2014) The effects of exogenous salicylic acid in the antioxidant defense system in canola plants (Brassica napus L.) exposed to copper. Int J Biosci 5:64–73

    Article  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019. https://doi.org/10.1007/s00709-014-0610-7

    Article  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Sign Behav 8:e26374. https://doi.org/10.4161/psb.26374

    Article  CAS  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18. https://doi.org/10.1016/j.jplph.2014.09.011

    Article  CAS  Google Scholar 

  • Kim YS, Choi D, Lee MM, Lee SH, Kim WT (1998) Biotic and abiotic stress-related expression of 1-aminocyclopropane-1-carboxylate oxidase gene family in Nicotiana glutinosa L. Plant Cell Physiol 39:565–573. https://doi.org/10.1093/oxfordjournals.pcp.a029406

    Article  CAS  Google Scholar 

  • Klee HJ (2004) Ethylene signal transduction: moving beyond Arabidopsis. Plant Physiol 135:660–667

    Article  CAS  Google Scholar 

  • Kovács V, Gondor OK, Szalai G, Darkó E, Majláth I, Janda T, Pál M (2014) Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. J Hazard Mater 280:12–19

    Article  Google Scholar 

  • Laspina N, Groppa M, Tomaro M, Benavides M (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Leshem Y, Haramaty E (1996) Plant aging: the emission of NO and ethylene and effect of NO-releasing compounds on growth of pea (Pisum sativum) foliage. J Plant Physiol 148:258–263

    Article  CAS  Google Scholar 

  • Lim JM, Salido AL, Butcher DJ (2004) Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem J 76(1-2):3–9

    Article  CAS  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    Article  CAS  Google Scholar 

  • Liu KL, Shen L, Wang JQ, Sheng JP (2008) Rapid inactivation of chloroplastic ascorbate peroxidase is responsible for oxidative modification to Rubisco in tomato (Lycopersicon esculentum) under cadmium stress. J Integr Plant Biol 50:415–426

    Article  CAS  Google Scholar 

  • Lopes MS, Iglesia-Turiño S, Cabrera-Bosquet L, Serret MD, Bort J, Febrero A, Araus JL (2013) Molecular and physiological mechanisms associated with root exposure to mercury in barley. Metallomics 5(9):1305–1315

    Article  CAS  Google Scholar 

  • Lu WP, Kirkham MB (1991) Genotypic tolerance to metals as indicated by ethylene production. Water Air Soil Pollut 57–58:605–615. https://doi.org/10.1007/BF00282924

    Article  Google Scholar 

  • Lynch J, Brown KM (1997) Ethylene and plant responses to nutritional stress. Physiol Plant 100:613–619. https://doi.org/10.1111/j.1399-3054.1997.tb03067.x

    Article  CAS  Google Scholar 

  • Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57:187–194

    Article  CAS  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162:1338–1346

    Article  CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004a) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132(1):21–27

    Article  CAS  Google Scholar 

  • Marchiol L, Sacco P, Assolari S, Zerbi G (2004b) Reclamation of polluted soil: phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut 158(1):345–356

    Article  CAS  Google Scholar 

  • Masood A, Khan N (2013) Ethylene and gibberellic acid interplay in regulation of photosynthetic capacity inhibition by cadmium. J Plant Biochem Physiol 1:111

    Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533. https://doi.org/10.1111/j.1365-3040.2011.02432.x

    Article  CAS  Google Scholar 

  • Meers E, Qadir M, De Caritat P, Tack FMG, Du Laing G, Zia MH (2009) EDTA-assisted Pb phytoextraction. Chemosphere 74(10):1279–1291

    Article  Google Scholar 

  • Mertens J, Vangronsveld J, Straeten D, Poucke MV (1999) Effects of copper and zinc on the ethylene production of Arabidopsis thaliana. In: Biology and biotechnology of the plant hormone ethylene II. Springer, Dordrecht, pp 333–338

    Chapter  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz K-J (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  CAS  Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Noctor G (2010) Arabidopsis glutathione reductase1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153(3):1144–1160

    Article  CAS  Google Scholar 

  • Mishra A, Choudhuri MA (1999) Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol Plantarum 42:409–415

    Article  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19. https://doi.org/10.1016/j.tplants.2005.11.002

    Article  CAS  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4. https://doi.org/10.3389/fpls.2014.00004

    Article  Google Scholar 

  • Mohsenzadeh S, Shahrtash M, Mohabatkar H (2011) Interactive effects of salicylic acid and silicon on some physiological responses of cadmium-stressed maize seedlings. Iranian J Sci Technol (Sci) 35:57–60

    Google Scholar 

  • Montero-Palmero MB, Martín-Barranco A, Escobar C, Hernández LE (2014) Early transcriptional responses to mercury: a role for ethylene in mercury-induced stress. New Phytol 201:116–130. https://doi.org/10.1111/nph.12486

    Article  CAS  Google Scholar 

  • Mostofa MG, Hossain MA, Fujita M, Tran LSP (2015) Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci Rep 5:11433

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Neilson S, Rajakaruna N (2015) Phytoremediation of agricultural soils: using plants to clean metal-contaminated arable land. In: Phytoremediation. Springer, Cham, pp 159–168

    Google Scholar 

  • Noriega G, Caggiano E, Lecube ML, Cruz DS, Batlle A, Tomaro M, Balestrasse KB (2012) The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. Biometals 25:1155–1165

    Article  CAS  Google Scholar 

  • Nouairi I, Ammar WB, Youssef NB, Daoud DBM, Ghorbal MH, Zarrouk M (2006) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170(3):511–519

    Article  CAS  Google Scholar 

  • Nurnberger T (1999) Signal perception in plant pathogen defense. Cell Mol Life Sci 55:167–182

    Article  CAS  Google Scholar 

  • Nurnberger T, Brunner F (2002) Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biol 5(4):318–324

    Article  Google Scholar 

  • Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogen-Activated Protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13:7828–7853

    Article  CAS  Google Scholar 

  • Park J, Kim JY, Kim KW (2012) Phytoremediation of soil contaminated with heavy metals using Brassica napus. Geosyst Eng 15(1):10–18

    Article  Google Scholar 

  • Parveen T, Mehrotra I, Rao MS (2014) Impact of treated municipal wastewater irrigation on turnip (Brassica rapa). J Plant Interact 9(1):200–211

    Article  Google Scholar 

  • Parveen T, Hussain A, Someshwar Rao M (2015) Growth and accumulation of heavy metals in turnip (Brassica rapa) irrigated with different concentrations of treated municipal wastewater. Hydrol Res 46(1):60–71

    Article  CAS  Google Scholar 

  • Podar D, Ramsey MH, Hutchings MJ (2004) Effect of cadmium, zinc and substrate heterogeneity on yield, shoot metal concentration and metal uptake by Brassica juncea: implications for human health risk assessment and phytoremediation. New Phytol 163(2):313–324

    Article  CAS  Google Scholar 

  • Purakayastha TJ, Viswanath T, Bhadraray S, Chhonkar PK, Adhikari PP, Suribabu K (2008) Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Int J Phytoremediation 10(1):61–72

    Article  CAS  Google Scholar 

  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167(5):1171–1181

    Article  CAS  Google Scholar 

  • Qiao H, Shen Z, Huang SS, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390–393

    Article  CAS  Google Scholar 

  • Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F (2006) Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63(6):918–925

    Article  CAS  Google Scholar 

  • Quartacci MF, Irtelli B, Baker AJ, Navari-Izzo F (2007) The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere 68(10):1920–1928

    Article  CAS  Google Scholar 

  • Ribeiro EA Jr, Cunha FQ, Tamashiro WM, Martins IS (1999) Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett 445:283–286

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueño MC, Del Río LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150(1):229–243

    Article  Google Scholar 

  • Sankaran RP, Ebbs SD (2008) Transport of Cd and Zn to seeds of Indian mustard (Brassica juncea) during specific stages of plant growth and development. Physiol Plant 132(1):69–78

    CAS  Google Scholar 

  • Schellingen K, Van Der Straeten D, Vandenbussche F, Prinsen E, Remans T, Vangronsveld J, Cuypers A (2014) Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression. BMC Plant Biol 14(1):1–14

    Article  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365. https://doi.org/10.1093/jexbot/53.372.1351

    Article  CAS  Google Scholar 

  • Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Cuypers A (2012a) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35(2):334–346

    Article  CAS  Google Scholar 

  • Seth CS, Misra V, Chauhan LKS (2012b) Accumulation, detoxification, and genotoxicity of heavy metals in Indian mustard (Brassica juncea L.). Int J Phytoremediation 14(1):1–13

    Article  Google Scholar 

  • Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Abbasi GH (2014) Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47

    Article  Google Scholar 

  • Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50. https://doi.org/10.1016/j.tplants.2008.10.007

    Article  CAS  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59(5):223–233

    Article  CAS  Google Scholar 

  • Sisler E, Serek M (1997) Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol Plant 100:577–582

    Article  CAS  Google Scholar 

  • Srivastava MK, Dwivedi UN (1998) Salicylic acid modulates glutathione metabolism in pea seedlings. J Plant Physiol 153:409–414

    Article  CAS  Google Scholar 

  • Srivastava AK, Venkatachalam P, Raghothama KG, Sahi SV (2007) Identification of lead-regulated genes by suppression subtractive hybridization in the heavy metal accumulator Sesbania drummondii. Planta 225:1353–1365. https://doi.org/10.1007/s00425-006-0445-3

    Article  CAS  Google Scholar 

  • Sun P, Tian QY, Zhao MG, Dai XY, Huang JH, Li LH, Zhang WH (2007) Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicus L. Plant Cell Physiol 48(8):1229–1235

    Article  CAS  Google Scholar 

  • Sun P, Tian QY, Chen J, Zhang WH (2010) Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot 61:347–356

    Article  CAS  Google Scholar 

  • Thao NP, Khan MIR, Binh N, Thu A, Lan X, Hoang T et al (2015) Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Cell Environ 169:73–84. https://doi.org/10.1104/pp.15.00663

    Article  CAS  Google Scholar 

  • Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) Molecular mechanistic model of plant heavy metal tolerance. Biometals 25:489–505

    Article  CAS  Google Scholar 

  • Trinh NN, Huang TL, Chi WC, Fu SF, Chen CC, Huang HJ (2014) Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol Plant 150(2):205–224

    Article  CAS  Google Scholar 

  • Turan M, Esringu A (2007) Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant Soil Environ 53(1):7

    Article  CAS  Google Scholar 

  • Tyler BM (2002) Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu Rev Phytopathol 40:137–167

    Article  CAS  Google Scholar 

  • Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Pieterse CMJ (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCF COI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25:744–761

    Article  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16(7):765–794

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372. https://doi.org/10.1016/j.pbi.2009.05.001

    Article  CAS  Google Scholar 

  • Wang Y, Hu J, Qin G, Cui H, Wang Q (2012) Salicylic acid analogues with biological activity may induce chilling tolerance of maize (Zea mays) seeds. Botany 90:845–855. https://doi.org/10.1139/b2012-055

    Article  CAS  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+− hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963. https://doi.org/10.1111/j.1365-3040.2005.01479.x

    Article  CAS  Google Scholar 

  • Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H (2012) Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22:1613–1616

    Article  CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  CAS  Google Scholar 

  • Yamauchi M, Peng XX (1995) Iron toxicity and stress-induced ethylene production in rice leaves. Plant Soil 173:21–28. https://doi.org/10.1007/BF00155514

    Article  CAS  Google Scholar 

  • Yokotani N, Tamura S, Nakano R, Inaba A, McGlasson WB, Kubo Y (2004) Comparison of ethylene- and wound-induced responses in fruit of wild-type, rin and nor tomatoes. Postharvest Biol Technol 32:247–252

    Article  CAS  Google Scholar 

  • Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279

    Article  CAS  Google Scholar 

  • Yuan HM, Xu HH, Liu WC, Lu YT (2013) Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol 54:766–778

    Article  CAS  Google Scholar 

  • Zaier H, Ghnaya T, Rejeb KB, Lakhdar A, Rejeb S, Jemal F (2010) Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresour Technol 101(11):3978–3983

    Article  CAS  Google Scholar 

  • Zengin F (2015) Effects of exogenous salicylic acid on growth characteristics and biochemical content of wheat seeds under arsenic stress. J Environ Biol 36:249

    Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    Article  CAS  Google Scholar 

  • Zhou ZS, Yang SN, Li H, Zhu CC, Liu ZP, Yang ZM (2013) Molecular dissection of mercury-responsive transcriptome and sense/antisense genes in Medicago truncatula. J Hazard Mater 252–253:123–131. https://doi.org/10.1016/j.jhazmat.2013.02.011

    Article  CAS  Google Scholar 

  • Zhu Z, An F, Feng Y, Li P, Xue L, Mu A, Guo H (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci 108(30):12539–12544

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, S.A., Lone, R., Tyub, S., Kamili, A.N., Nawchoo, I.A. (2023). Crosstalk of Ethylene and Salicylic Acid in the Amelioration of Toxic Effects of Heavy Metal Stress in Mustard. In: Lone, R., Khan, S., Mohammed Al-Sadi, A. (eds) Plant Phenolics in Abiotic Stress Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-6426-8_9

Download citation

Publish with us

Policies and ethics