Skip to main content

Acute and Chronic Wound Management: Assessment, Therapy and Monitoring Strategies

  • Chapter
  • First Online:
  • 565 Accesses

Abstract

The dynamic nature of the wound healing is a well-studied process. With the rapid evolution of healthcare science, efforts are being made to design newer therapies, along with advancement in the available technologies. In this regard, a detailed knowledge about the molecular mechanisms underlying the healing process is necessary to develop a more effective and targeted therapeutic method. In addition to improve the therapeutic techniques, various wound healing models also need to be designed and studied for understanding the associated molecular intricacies of each phase of the healing process. Novel technologies are being combined with the long-practiced traditional therapeutic methods with the object of achieving a synergistic effect for faster healing with minimal scarring. With technological development, non-invasive wound assessment methods are being implemented by utilizing various imaging techniques and electromagnetic radiations, to minimize painful invasive wound analysis. Smart devices are also been developed with an aim to monitor the healing process in real time, which provides the ability to modulate treatment procedures according to the rate of healing. This chapter aims to give a brief overview on the emerging therapeutic methods which are being developed to aid in wound management strategies. An overview of the different invasive and non-invasive wound assessment and monitoring methods along with mathematically designed wound assessment models is also discussed in a nutshell. This would provide an idea about the possible areas for development on the currently available strategies for improving the healthcare and well-being of individuals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almeida-Lopes L et al (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29(2):179–184

    Article  CAS  Google Scholar 

  • Anjum S, Abha Arora MS, Alam, and Bhuvanesh Gupta. (2016) Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm 508(1):92–101. https://www.sciencedirect.com/science/article/pii/S0378517316303817

    Article  CAS  Google Scholar 

  • Aumeeruddy-Elalfi Z, Gurib-Fakim A, Fawzi Mahomoodally M (2016) Chemical composition, antimicrobial and antibiotic potentiating activity of essential oils from 10 tropical medicinal plants from Mauritius. J Herbal Med 6(2):88–95

    Article  Google Scholar 

  • Ayuk SM, Abrahamse H, Houreld NN (2016) The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation. J Diabetes Res 2016:2897656. https://pubmed.ncbi.nlm.nih.gov/27314046/. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Balaure PC et al (2019) In vitro and in vivo studies of novel fabricated bioactive dressings based on collagen and zinc oxide 3D scaffolds. Int J Pharm 557:199–207

    Article  CAS  Google Scholar 

  • Banerjee J, Chan YC, Sen CK (2011) MicroRNAs in skin and wound healing. Physiol Genomics 43(10):543–556

    Article  CAS  Google Scholar 

  • Banwell PE, Musgrave M (2004) Topical negative pressure therapy: mechanisms and indications. Int Wound J 1(2):95–106. https://doi.org/10.1111/j.1742-4801.2004.00031.x

    Article  Google Scholar 

  • Baracho V d S et al (2021) Phototherapy (Cluster Multi-Diode 630 Nm and 940 Nm) on the healing of pressure injury: a pilot study. J Vasc Nurs 39(3):67–75

    Article  Google Scholar 

  • Basit HM et al (2021) microwave enabled physically cross linked sodium alginate and pectin film and their application in combination with modified chitosan-curcumin nanoparticles. A novel strategy for 2nd degree burns wound healing in animals. Polymers 13(16):2716. https://www.mdpi.com/2073-4360/13/16/2716/htm. Accessed 7 Jan 2022

    Article  CAS  Google Scholar 

  • Bjarnsholt T et al (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16(1):2–10

    Article  Google Scholar 

  • Boschi ES et al (2008) Anti-inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med 40(7):500–508. https://pubmed.ncbi.nlm.nih.gov/18727002/. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Brem H et al (2007) Molecular markers in patients with chronic wounds to guide surgical debridement. Mol Med (Cambridge, Mass) 13(1–2):30–39

    Article  Google Scholar 

  • Calcabrini C et al (2017) Effect of extremely low-frequency electromagnetic fields on antioxidant activity in the human keratinocyte cell line NCTC 2544. Biotechnol Appl Biochem 64(3):415–422

    Article  CAS  Google Scholar 

  • Carriel V et al (2012) Epithelial and stromal developmental patterns in a novel substitute of the human skin generated with fibrin-agarose biomaterials. Cells Tissues Organs 196(1):1–12. https://pubmed.ncbi.nlm.nih.gov/22146480/. Accessed 7 Jan 2022

    Article  CAS  Google Scholar 

  • Chen ZJ, Yang JP, Wu BM, Tawil B (2014) A novel three-dimensional wound healing model. J Dev Biol 2(4):198–209. https://www.mdpi.com/2221-3759/2/4/198

    Article  Google Scholar 

  • Chou T-H et al (2020) SPECT/CT imaging: a noninvasive approach for evaluating serial changes in angiosome foot perfusion in critical limb ischemia. Adv Wound Care 9(3):103–110

    Article  Google Scholar 

  • Chowdhari S, Sardana K, Saini N (2017) MiR-4516, a microRNA downregulated in psoriasis inhibits keratinocyte motility by targeting fibronectin/integrin Α9 signaling. Biochim Biophys Acta Mol basis Dis 1863(12):3142–3152

    Article  CAS  Google Scholar 

  • Cohen M, Cerniglia B, Gorbachova T, Horrow J (2019) Added value of MRI to X-ray in guiding the extent of surgical resection in diabetic forefoot osteomyelitis: a review of pathologically proven, surgically treated cases. Skelet Radiol 48(3):405–411

    Article  Google Scholar 

  • Costin G-E, Birlea SA, Norris DA (2012) Trends in wound repair: cellular and molecular basis of regenerative therapy using electromagnetic fields. Curr Mol Med 12(1):14–26

    Article  CAS  Google Scholar 

  • Das P, Horton R (2016) Antibiotics: achieving the balance between access and excess. Lancet 387(10014):102–104. http://www.thelancet.com/article/S0140673615007291/fulltext. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Deegan AJ et al (2018) Optical coherence tomography angiography monitors human cutaneous wound healing over time. Quant Imaging Med Surg 8(2):135–150

    Article  Google Scholar 

  • Mahdavian Delavary B et al (2011) Macrophages in skin injury and repair. Immunobiology 216(7):753–762

    Article  Google Scholar 

  • Denzinger M et al (2021) Does phototherapy promote wound healing? Limitations of blue light irradiation. Wounds 33(4):91–98

    Google Scholar 

  • Duzgun AP et al (2008) Effect of hyperbaric oxygen therapy on healing of diabetic foot ulcers. J Foot Ankle Surg 47(6):515–519

    Article  Google Scholar 

  • Ellis S, Lin EJ, Tartar D (2018) Immunology of wound healing. Curr Dermatol Rep 7(4):350–358. https://link.springer.com/article/10.1007/s13671-018-0234-9. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Elsayed EE, Zytoon AA, Eltelwany AM (2018) Role of computed tomography angiography and color doppler ultrasonography in the evaluation of diabetic foot. Menoufia Med J 31(2):508. http://www.mmj.eg.net/article.asp?issn=1110-2098;year=2018;volume=31;issue=2;spage=508;epage=513;aulast=Elsayed. Accessed 7 Jan 2022

    Google Scholar 

  • Eskandarlou M, Azimi M, Rabiee S, Rabiee MAS (2016) The healing effect of amniotic membrane in burn patients. World J Plastic Surg 5(1):39–44

    Google Scholar 

  • Fenyö M (1984) Theoretical and experimental basis of biostimulation by laser irradiation. Opt Laser Technol 16(4):209–215

    Article  Google Scholar 

  • Fife CE et al (2002) The predictive value of transcutaneous oxygen tension measurement in diabetic lower extremity ulcers treated with hyperbaric oxygen therapy: a retrospective analysis of 1144 patients. Wound Repair Regen 10(4):198–207. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1524-475X.2002.10402.x. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Fong J, Wood F, Fowler B (2005) A silver coated dressing reduces the incidence of early burn wound cellulitis and associated costs of inpatient treatment: comparative patient care audits. Burns 31(5):562–567

    Article  CAS  Google Scholar 

  • Fredericks DC et al (2000) Effects of pulsed electromagnetic fields on bone healing in a rabbit tibial osteotomy model. J Orthop Trauma 14(2):93–100

    Article  CAS  Google Scholar 

  • Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care 4(9):560–582

    Article  Google Scholar 

  • Galassi G et al (2000) In vitro reconstructed dermis implanted in human wounds: degradation studies of the HA-based supporting scaffold. Biomaterials 21(21):2183–2191. https://pubmed.ncbi.nlm.nih.gov/10985492/. Accessed 7 Jan 2022

    Article  CAS  Google Scholar 

  • Gao X et al (2021) Engineering of a hollow-structured Cu2−XS nano-homojunction platform for near infrared-triggered infected wound healing and cancer therapy. Adv Funct Mater 31(52):2106700. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202106700. Accessed 7 Jan 2022

    Article  CAS  Google Scholar 

  • Gao Y et al (2022) Microwave-triggered ionic liquid-based hydrogel dressing with excellent hyperthermia and transdermal drug delivery performance. Chem Eng J 429:131590

    Article  CAS  Google Scholar 

  • Garzón I et al (2013) Wharton’s jelly stem cells: a novel cell source for oral mucosa and skin epithelia regeneration. Stem Cells Transl Med 2(8):625–632

    Article  Google Scholar 

  • Ghosh B, Mandal M, Mitra P, Chatterjee J (2021) Attenuation corrected-optical coherence tomography for quantitative assessment of skin wound healing and scar morphology. J Biophotonics 14(4):e202000357

    Article  CAS  Google Scholar 

  • Gordley K, Cole P, Hicks J, Hollier L (2009) A comparative, long term assessment of soft tissue substitutes: AlloDerm, Enduragen, and Dermamatrix. J Plast Reconstr Aesthet Surg 62(6):849–850

    Article  Google Scholar 

  • Graham JS et al (2005) Wound healing of cutaneous sulfur mustard injuries: strategies for the development of improved therapies. J Burns Wounds 4:e1

    Google Scholar 

  • Grayson ML et al (1995) Probing to bone in infected pedal ulcers. a clinical sign of underlying osteomyelitis in diabetic patients. JAMA 273(9):721–723

    Article  CAS  Google Scholar 

  • Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229

    Article  CAS  Google Scholar 

  • Guo J et al (2017) MiR-29b promotes skin wound healing and reduces excessive scar formation by inhibition of the TGF-Β1/Smad/CTGF signaling pathway. Can J Physiol Pharmacol 95(4):437–442

    Article  CAS  Google Scholar 

  • Gupta A, Kumar P (2015) Assessment of the histological state of the healing wound. Plast Aesthet Res 2:239–242

    Article  Google Scholar 

  • Halim AS, Khoo TL, Yussof SJM (2010) Biologic and synthetic skin substitutes: an overview. Indian J Plastic Surg 43(Suppl):S23–S28

    Article  Google Scholar 

  • Hamdan S et al (2017) Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Central Sci 3(3):163–175. https://pubmed.ncbi.nlm.nih.gov/28386594/. Accessed 7 Jan 2022

    Article  CAS  Google Scholar 

  • Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34(3):599–610

    Article  Google Scholar 

  • Hardman MJ, Ashcroft GS (2008) Estrogen, not intrinsic aging, is the major regulator of delayed human wound healing in the elderly. Genome Biol 9(5):R80

    Article  Google Scholar 

  • Henry SL, Concannon MJ, Yee GJ (2008) The effect of magnetic fields on wound healing: experimental study and review of the literature. Eplasty 8:e40

    Google Scholar 

  • Hong WX et al (2014) The role of hypoxia-inducible factor in wound healing. Adv Wound Care 3(5):390

    Article  Google Scholar 

  • Hopf HW et al (2005) Hyperoxia and angiogenesis. Wound Repair Regen 13(6):558–564. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1524-475X.2005.00078.x. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Horch RE et al (2019) Keratinocyte monolayers on hyaluronic acid membranes as ‘upside-down’ grafts reconstitute full-thickness wounds. Med Sci Monit 25:6702–6710. https://pubmed.ncbi.nlm.nih.gov/31490908/. Accessed 7 Jan 2022

    Article  CAS  Google Scholar 

  • Howell RS et al (2018) Hyperbaric oxygen therapy: indications, contraindications, and use at a tertiary care center. AORN J 107(4):442–453. https://onlinelibrary.wiley.com/doi/full/10.1002/aorn.12097. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Icli B, Winona W, Ozdemir D, Li H, Cheng HS et al (2019a) MicroRNA-615-5p regulates angiogenesis and tissue repair by targeting AKT/ENOS (Protein Kinase B/Endothelial Nitric Oxide Synthase) signaling in endothelial cells. Arterioscler Thromb Vasc Biol 39(7):1458–1474

    Article  CAS  Google Scholar 

  • Icli B, Winona W, Ozdemir D, Li H, Haemmig S et al (2019b) MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells. FASEB J 33(4):5599–5614. https://onlinelibrary.wiley.com/doi/full/10.1096/fj.201802063RR. Accessed 7 Jan 2022

    Article  CAS  Google Scholar 

  • Icli B et al (2020) MiR-4674 regulates angiogenesis in tissue injury by targeting P38K signaling in endothelial cells. Am J Physiol Cell Physiol 318(3):C524–C535

    Article  CAS  Google Scholar 

  • Ishack S, Lipner SR (2020) A review of 3-dimensional skin bioprinting techniques: applications, approaches, and trends. Dermatol Surg 46(12):1500–1505

    Article  CAS  Google Scholar 

  • Jallali N, Withey S, Butler PE (2005) Hyperbaric oxygen as adjuvant therapy in the management of necrotizing fasciitis. Am J Surg 189(4):462–466

    Article  CAS  Google Scholar 

  • Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology. Immunobiology (14102):1–10. https://www.ncbi.nlm.nih.gov/books/NBK10757/. Accessed 7 Jan 2022

  • Jiang Z et al (2020) MicroRNA-26a inhibits wound healing through decreased keratinocytes migration by regulating ITGA5 through PI3K/AKT signaling pathway. Biosci Rep 40(9):BSR20201361. https://doi.org/10.1042/BSR20201361

    Article  Google Scholar 

  • Jin Y et al (2013) MicroRNA-99 family targets AKT/MTOR signaling pathway in dermal wound healing. PLoS One 8(5):e64434. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064434. Accessed 7 Jan 2022

    Article  CAS  Google Scholar 

  • Johnnidis JB et al (2008) Regulation of progenitor cell proliferation and granulocyte function by MicroRNA-223. Nature 451(7182):1125–1129

    Article  CAS  Google Scholar 

  • Kanapathy M et al (2017) Epidermal grafting for wound healing: a review on the harvesting systems, the ultrastructure of the graft and the mechanism of wound healing. Int Wound J 14(1):16–23

    Article  Google Scholar 

  • Karamichos D, Lakshman N, Matthew Petroll W (2009) An Experimental model for assessing fibroblast migration in 3-D collagen matrices. Cell Motil Cytoskeleton 66(1):1

    Article  Google Scholar 

  • Kato M et al (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104(9):3432–3437

    Article  CAS  Google Scholar 

  • Korpan NN, Resch KL, Kokoschinegg P (1994) Continuous microwave enhances the healing process of septic and aseptic wounds in rabbits. J Surg Res 57(6):667–671

    Article  CAS  Google Scholar 

  • Kundin JI (1985) Designing and developing a new measuring instrument. Perioper Nurs Q 1(4):40–45

    CAS  Google Scholar 

  • Langemo DK et al (2001) Comparison of 2 wound volume measurement methods. Adv Skin Wound Care 14(4):190–196

    Article  CAS  Google Scholar 

  • Lee Y-H et al (2012) Antioxidant Sol-Gel improves cutaneous wound healing in streptozotocin-induced diabetic rats. Exp Diabetes Res 2012:504693

    Article  Google Scholar 

  • Lemo N, Marignac G, Reyes-Gomez E, Lilin T, Crosaz O, Ehrenfest DMD (2010) Cutaneous reepithelialization and wound contraction after skin biopsies in rabbits: a mathematical model for healing and remodelling index. Vet Arh 80:637–652

    Google Scholar 

  • Li D et al (2015) MicroRNA-132 Enhances Transition from Inflammation to Proliferation during Wound Healing. J Clin Invest 125(8):3008–3026

    Article  Google Scholar 

  • Li S et al (2020a) Imaging in chronic wound diagnostics. Adv Wound Care 9(5):245–263

    Article  Google Scholar 

  • Li X et al (2020b) Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. J Nanobiotechnol 18(1):113. https://doi.org/10.1186/s12951-020-00670-x

    Article  CAS  Google Scholar 

  • Liekens S, De Clercq E, Neyts J (2001) Angiogenesis: regulators and clinical applications. Biochem Pharmacol 61(3):253–270

    Article  CAS  Google Scholar 

  • Liu ZJ et al (2016) Directing and potentiating stem cell-mediated angiogenesis and tissue repair by cell surface E-selectin coating. PLoS One 11(4):e0154053. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154053. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Lu G, Fei B (2014) Medical hyperspectral imaging: a review. J Biomed Opt 19(1):10901

    Article  Google Scholar 

  • Luo M et al (2021) Injectable Self-healing anti-inflammatory europium oxide-based dressing with high angiogenesis for improving wound healing and skin regeneration. Chem Eng J 412:128471

    Article  CAS  Google Scholar 

  • MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445(7130):874–880

    Article  CAS  Google Scholar 

  • Masters J, Cook J, Achten J, Costa ML (2021) A feasibility study of standard dressings versus negative-pressure wound therapy in the treatment of adult patients having surgical incisions for hip fractures: the WHISH randomized controlled trial. Bone Joint J 103-B(4):755–761. https://online.boneandjoint.org.uk/doi/abs/10.1302/0301-620X.103B4.BJJ-2020-1603.R1. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Maurer B et al (2010) MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum 62(6):1733–1743

    Article  CAS  Google Scholar 

  • McCarty SM, Percival SL (2013) Proteases and delayed wound healing. Adv Wound Care 2(8):438–447

    Article  Google Scholar 

  • Mester E, Spiry T, Szende B, Tota JG (1971) Effect of laser rays on wound healing. Am J Surg 122(4):532–535

    Article  CAS  Google Scholar 

  • Meuli M et al (2019) A cultured autologous dermo-epidermal skin substitute for full-thickness skin defects: a Phase I, open, prospective clinical trial in children. Plast Reconstr Surg 144(1):188–198

    Article  CAS  Google Scholar 

  • Miller M-C, Nanchahal J (2005) Advances in the modulation of cutaneous wound healing and scarring. BioDrugs 19(6):363–381. https://doi.org/10.2165/00063030-200519060-00004

    Article  CAS  Google Scholar 

  • Minatel DG, Marco AC, Frade SCF, Enwemeka CS (2009) Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies. Lasers Surg Med 41(6):433–441. https://pubmed.ncbi.nlm.nih.gov/19588536/. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Mohafez H et al (2018) Quantitative assessment of wound healing using high-frequency ultrasound image analysis. Skin Res Technol 24(1):45–53

    Article  CAS  Google Scholar 

  • Monstrey S et al (2002) The effect of polarized light on wound healing. Eur J Plast Surg 24(8):377–382. https://doi.org/10.1007/s00238-001-0305-0

    Article  Google Scholar 

  • Moradi A et al (2019) An improvement in acute wound healing in mice by the combined application of photobiomodulation and curcumin-loaded iron particles. Lasers Med Sci 34(4):779–791

    Article  Google Scholar 

  • Mowafy ZME, Ibrahim ISM, Ibrahim MB, Elshahawy AMMM (2021) Wound surface area and colony count of various modes of phototherapy. Egypt J Hosp Med 85(2):3524–3529. https://ejhm.journals.ekb.eg/article_200581.html. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Mukherjee R, Tewary S, Routray A (2017) Diagnostic and prognostic utility of non-invasive multimodal imaging in chronic wound monitoring: a systematic review. J Med Syst 41(3):46

    Article  Google Scholar 

  • Mulder G et al (1993) Fibrin cuff lysis in chronic venous ulcers treated with a hydrocolloid dressing. Int J Dermatol 32(4):304–306

    Article  CAS  Google Scholar 

  • Mustoe T (2004) Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg 187(5A):65S–70S

    Article  CAS  Google Scholar 

  • Nuutila K et al (2019) Novel negative pressure wound therapy device without foam or gauze is effective at −50 MmHg. Wound Repair Regen 27(2):162–169

    Article  Google Scholar 

  • Olson JL, Atala A, Yoo JJ (2011) Tissue engineering: current strategies and future directions. Chonnam Med J 47(1):1–13

    Article  CAS  Google Scholar 

  • Park KS et al (2018) Multifunctional in vivo imaging for monitoring wound healing using swept-source polarization-sensitive optical coherence tomography. Lasers Surg Med 50(3):213–221

    Article  Google Scholar 

  • Patruno A et al (2018) Extremely low-frequency electromagnetic fields accelerates wound healing modulating MMP-9 and inflammatory cytokines. Cell Prolif 51(2):e12432

    Article  CAS  Google Scholar 

  • Phan DT et al (2021) A flexible, and wireless LED therapy patch for skin wound photomedicine with IoT-connected healthcare application. Flex Printed Electr 6(4):045002. https://iopscience.iop.org/article/10.1088/2058-8585/ac2c50. Accessed 7 Jan 2022

    Article  CAS  Google Scholar 

  • Pişkin A et al (2014) The beneficial effects of Momordica charantia (bitter gourd) on wound healing of rabbit skin. J Dermatolog Treat 25(4):350–357

    Article  Google Scholar 

  • Primo MN, Bak RO, Schibler B, Mikkelsen JG (2012) Regulation of pro-inflammatory cytokines TNFα and IL24 by microRNA-203 in primary keratinocytes. Cytokine 60(3):741–748

    Article  CAS  Google Scholar 

  • Rădulescu M et al (2016) Fabrication, characterization, and evaluation of bionanocomposites based on natural polymers and antibiotics for wound healing applications. Molecules (Basel, Switzerland) 21(6)

    Google Scholar 

  • Rodriguez PG, Felix FN, Woodley DT, Shim EK (2008) The role of oxygen in wound healing: a review of the literature. Dermatol Surg 34(9):1159–1169

    CAS  Google Scholar 

  • Rodríguez-Acosta H et al (2021) Chronic wound healing by controlled release of chitosan hydrogels loaded with silver nanoparticles and calendula extract. J Tissue Viability 31(1):173–179

    Article  Google Scholar 

  • Rowan MP et al (2015) Burn wound healing and treatment: review and advancements. Crit Care 19:243

    Article  Google Scholar 

  • Ruggeri ZM (2006) Platelet interactions with vessel wall components during thrombogenesis. Blood Cells Mol Dis 36(2):145–147

    Article  CAS  Google Scholar 

  • Saaiq M, Hameed-Ud-Din MIK, Chaudhery SM (2010) Vacuum-assisted closure therapy as a pretreatment for split thickness skin grafts. J Coll Physicians Surg Pak 20(10):675–679

    Google Scholar 

  • Samoylova AV (2020) Dynamics of burn wound healing in rats irradiated by nanosecond microwave pulses. Biomed J Sci Tech Res 32(2)

    Google Scholar 

  • Sampaio ABA et al (2021) Combination of photodynamic therapy and phototherapy for the treatment of cutaneous open wounds in dogs-case reports. Veterinary Arch 91(5):559–564

    Google Scholar 

  • Scagnelli AM (2016) Therapeutic review: manuka honey. J Exotic Pet Med 25(2):168–171

    Article  Google Scholar 

  • Scherer LA et al (2002) The vacuum assisted closure device: a method of securing skin grafts and improving graft survival. Arch Surg (Chicago, Ill: 1960) 137(8):930–934

    Article  Google Scholar 

  • Schreml S et al (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163(2):257–268

    Article  CAS  Google Scholar 

  • Schultz GS et al (2003) Wound bed preparation: a systematic approach to wound management. Wound Repair Regen 11(Suppl 1):S1–S28

    Article  Google Scholar 

  • Shang W et al (2019) Static magnetic field accelerates diabetic wound healing by facilitating resolution of inflammation. J Diabetes Res 2019:5641271

    Article  Google Scholar 

  • Sharrard WJ (1990) A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Joint Surg Br 72(3):347–355

    Article  CAS  Google Scholar 

  • Shevchenko RV, James SL, Elizabeth James S (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7(43):229–258

    Article  CAS  Google Scholar 

  • Shine J et al (2019) Negative pressure wound therapy as a definitive treatment for upper extremity wound defects: a systematic review. Int Wound J 16(4):960–967. https://onlinelibrary.wiley.com/doi/full/10.1111/iwj.13128. Accessed 7 Jan 2022

    Google Scholar 

  • Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746

    Article  CAS  Google Scholar 

  • Sowa MG, Kuo W-C, Ko AC, Armstrong DG (2016) Review of near-infrared methods for wound assessment. J Biomed Opt 21(9):1–17. https://doi.org/10.1117/1.JBO.21.9.091304

    Article  Google Scholar 

  • Sun BK, Siprashvili Z, Khavari PA (2014) Advances in skin grafting and treatment of cutaneous wounds. Science (New York, NY) 346(6212):941–945

    Article  CAS  Google Scholar 

  • Sun T et al (2018) Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing. Int J Nanomedicine 13:5771–5786

    Article  CAS  Google Scholar 

  • Sundaram GM et al (2013) ‘See-saw’ expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature 495(7439):103–106

    Article  CAS  Google Scholar 

  • Swift ME, Burns AL, Gray KL, DiPietro LA (2001) Age-related alterations in the inflammatory response to dermal injury. J Invest Dermatol 117(5):1027–1035

    Article  CAS  Google Scholar 

  • Taganov KD, Boldin MP, Chang K-J, Baltimore D (2006) NF-KappaB-dependent induction of microRNA MiR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103(33):12481–12486

    Article  CAS  Google Scholar 

  • Theoret C (2016) Physiology of wound healing. In: Equine wound management. Wiley, pp 1–13. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118999219.ch1

    Chapter  Google Scholar 

  • Thomas S, Andrews A, Jones M, Church J (1999) Maggots are useful in treating infected or necrotic wounds. BMJ (Clinical research ed) 318(7186):807–808

    Article  CAS  Google Scholar 

  • Tlapák J et al (2021) THE EFFECT OF HYPERBARIC OXYGEN THERAPY ON ACUTE WOUND HEALING IN RABBITS: AN EXPERIMENTAL STUDY AND HISTOPATHOLOGICAL ANALYSIS. Milit Med Sci Lett 90(1):2–11. http://mmsl.cz/doi/10.31482/mmsl.2021.001.html. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Wagner AE et al (2008) Dexamethasone impairs hypoxia-inducible factor-1 function. Biochem Biophys Res Commun 372(2):336–340

    Article  CAS  Google Scholar 

  • Wang J et al (2015) MiR-198 represses the proliferation of HaCaT cells by targeting cyclin D2. Int J Mol Sci 16(8):17018–17028. https://www.mdpi.com/1422-0067/16/8/17018/htm . Accessed 7 Jan 2022

    Article  CAS  Google Scholar 

  • Wang X et al (2022) Nanodot-doped peptide hydrogels for antibacterial phototherapy and wound healing. Biomater Sci 10:654–664. https://pubs.rsc.org/en/content/articlehtml/2022/bm/d1bm01533h. Accessed 7 Jan 2022

    Article  CAS  Google Scholar 

  • Whelan HT et al (2004) Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 19(6):305–314. https://www.liebertpub.com/doi/abs/10.1089/104454701753342758. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Wyper DJ, McNiven DR (1976) The effect of microwave therapy upon muscle blood flow in man. Br J Sports Med 10(1):19–21. https://pubmed.ncbi.nlm.nih.gov/963368/. Accessed 7 Jan 2022

    Article  CAS  Google Scholar 

  • Yamamoto T et al (2018) Skin xenotransplantation: historical review and clinical potential. Burns 44(7):1738–1749. https://pubmed.ncbi.nlm.nih.gov/29602717/. Accessed 7 Jan 2022

    Article  Google Scholar 

  • Ye J et al (2017) MicroRNA-155 inhibition promoted wound healing in diabetic rats. Int J Low Extrem Wounds 16(2):74–84

    Article  CAS  Google Scholar 

  • Ye S et al (2018) Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 10(6):5862–5870. https://pubs.acs.org/doi/full/10.1021/acsami.7b16680. Accessed 7 Jan 2022

    Article  CAS  Google Scholar 

  • Zhang Y et al (2021) Transcriptional network analysis reveals the role of MiR-223-5p during diabetic corneal epithelial regeneration. Front Mol Biosci 8:737472. https://pubmed.ncbi.nlm.nih.gov/34513931

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananya Barui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kabir, A., Sarkar, A., Barui, A. (2023). Acute and Chronic Wound Management: Assessment, Therapy and Monitoring Strategies. In: Chakravorty, N., Shukla, P.C. (eds) Regenerative Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-6008-6_6

Download citation

Publish with us

Policies and ethics