Skip to main content

Chitosan-Based Nanocomposites as Remarkably Effectual Wound Healing Agents

  • Chapter
  • First Online:
  • 257 Accesses

Abstract

In recent years, chitosan (CS), the second-most abundant biopolymer on earth, obtained by deacetylation of chitin, has garnered significant attention for its immense potential in accelerating the wound healing process. Some of its outstanding virtues such as biocompatibility, easy degradation, ability to promote collagen deposition, low cost, and non-toxic nature, combined with its antimicrobial and anti-inflammatory properties when coupled with nanomaterials like magnetic nanoparticles, render chitosan-based nanocomposites as effectual candidates in the process of wound healing. In this chapter, we briefly describe the processing techniques of chitosan-based nanocomposites, and their application as wound healing agents has been expounded. Further, significant emphasis has been given to the properties of these nanocomposites favoring the wound repair process as well as the mechanism and effects on wounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CAV:

Chitosan Aloe vera

CS :

Chitosan

DNA :

Deoxyribonucleic acid

ECM :

Extracellular matrix

EDTA :

Ethylenediaminetetraacetic Acid

IFN-γ :

Interferon gamma

IL-1 :

Interleukin 1

IL-10 :

Interleukin 10

IL-13 :

Interleukin 13

IL-4 :

Interleukin 4

IL-6 :

Interleukin 6

L-b-L :

Layer-by-layer

MIC :

Minimum Inhibitory Concentrations

MNPs :

Metal nanoparticles

MRSA :

Methicillin-resistant Staphylococcus aureus

NPs :

Nanoparticles

OCNP :

Drug Interaction Oral Contraceptive pill

PAA :

Polyacrylic acid

PECs :

Polyelectrolyte complexes

PLGA :

Poly D,L-lactic-co-glycolic acid

PVA :

Poly Vinyl Alcohol

PVA :

Polyvinyl alcohol

RNA :

Ribonucleic acid

ROS :

Reactive Oxygen Species

SEM :

Scanning Electron Microscope

TGF-β1 :

Transforming growth factor beta

TNF-α :

Tumour Necrosis Factor alpha

VEGF :

Vascular endothelial growth factor

References

  1. Granick MS, Baetz NW, Labroo P, Milner S, Li WW, Sopko NA (2019) In vivo expansion and regeneration of full-thickness functional skin with an autologous homologous skin construct: clinical proof of concept for chronic wound healing. Int Wound J 16(3):841–846. https://doi.org/10.1111/iwj.13109

    Article  Google Scholar 

  2. Abd El-Hack ME et al (2020) Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review. Int J Biol Macromolecules 164:2726–2744, Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2020.08.153

  3. Bhardwaj AK, Sundaram S, Yadav KK, Srivastav AL (2021) An overview of silver nano-particles as promising materials for water disinfection. Environm Technol Innov 23. Elsevier B.V. https://doi.org/10.1016/j.eti.2021.101721

  4. Daristotle JL et al (2020) Sprayable and biodegradable, intrinsically adhesive wound dressing with antimicrobial properties. Bioeng Translational Med 5(1). https://doi.org/10.1002/btm2.10149

  5. Rinaudo M (2006) Chitin and chitosan: properties and applications. Progress in Polym Sci (Oxford) 31(7):603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  Google Scholar 

  6. Rahman MM, Shahruzzaman M, Islam MS, Khan MN, Haque P (2019) Preparation and properties of biodegradable polymer/nano-hydroxyapatite bioceramic scaffold for spongy bone regeneration. J Polym Eng 39(2):134–142. https://doi.org/10.1515/polyeng-2018-0103

    Article  Google Scholar 

  7. Ahmad M, Zhang B, Manzoor K, Ahmad S, Ikram S (2020) Chitin and chitosan-based bionanocomposites. In: Bionanocomposites: green synthesis and applications, Elsevier, pp 145–156. https://doi.org/10.1016/B978-0-12-816751-9.00006-4

  8. “Notes to the Editor,” (1988)

    Google Scholar 

  9. Ramachandran S, Rajinipriya M, Soulestin J, Nagalakshmaiah M (2019) Recent developments in chitosan-based nanocomposites. https://doi.org/10.1007/978-3-030-05825-8_9

  10. Hasan MM, Habib ML, Anwaruzzaman M, Kamruzzaman M, Khan MN, Rahman MM (2020) Processing techniques of chitosan-based interpenetrating polymer networks, gels, blends, composites and nanocomposites. Inc. https://doi.org/10.1016/B978-0-12-817968-0.00003-2

    Article  Google Scholar 

  11. Ahmad M, Zhang B, Manzoor K, Ahmad S, Ikram S (2020) Chitin and chitosan-based bionanocomposites. In: Bionanocomposites: green synthesis and applications, pp 145–156. https://doi.org/10.1016/B978-0-12-816751-9.00006-4

  12. Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2(21):3161–3184. https://doi.org/10.1039/c4tb00027g

    Article  Google Scholar 

  13. Sara M, Rekha T, Koshy R, Mary SK, Thomas S, Pothan LA (2022) Springer briefs in molecular science biobased polymers, pp 123. [Online]. Available: www.epnoe.eu

  14. Azmana M, Mahmood S, Hilles AR, Rahman A, Bin Arifin MA, Ahmed S (2021) A review on chitosan and chitosan-based bionanocomposites: promising material for combatting global issues and its applications. Int J Biol Macromolecules 185:832–848. https://doi.org/10.1016/j.ijbiomac.2021.07.023

  15. Xue C, Wilson LD (2021) An overview of the design of Chitosan-based fiber composite materials. J Composites Sci 5(6). https://doi.org/10.3390/jcs5060160

  16. Devi MG, Kavya R, Dumaran Joefel J (2014) Characterization and stability studies of multilayer nano thin films. Int J Eng Res Technol 3(8):1509–1514

    Google Scholar 

  17. Li X, Bai H, Yang Y, Yoon J, Wang S, Zhang X (2019) Supramolecular antibacterial materials for combatting antibiotic resistance. Adv Mater 31(5). Wiley-VCH, Feb 01. https://doi.org/10.1002/adma.201805092

  18. Feng et al (2021) Chitosan-based functional materials for skin wound repair: mechanisms and applications. In: Frontiers in bioengineering and biotechnology, vol 9. Frontiers Media S.A., Feb 18. https://doi.org/10.3389/fbioe.2021.650598

  19. Bernkop-Schnürch A (2018) Strategies to overcome the polycation dilemma in drug delivery. Adv Drug Delivery Rev 136–137. Elsevier B.V., pp 62–72. https://doi.org/10.1016/j.addr.2018.07.017

  20. Xing K, Chen XG, Kong M, Liu CS, Cha DS, Park HJ (2009) Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohyd Polym 76(1):17–22. https://doi.org/10.1016/j.carbpol.2008.09.016

    Article  Google Scholar 

  21. Clifton LA et al (2015) Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models. Langmuir 31(1):404–412. https://doi.org/10.1021/la504407v

    Article  Google Scholar 

  22. Farhadihosseinabadi B, Zarebkohan A, Eftekhary M, Heiat M, Moosazadeh Moghaddam M, Gholipourmalekabadi M (2019) Crosstalk between chitosan and cell signaling pathways. Cellular and Molecular Life Sci 76(14):2697–2718, Birkhauser Verlag AG. https://doi.org/10.1007/s00018-019-03107-3

  23. Xing K, Chen XG, Liu CS, Cha DS, Park HJ (2009) Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. Int J Food Microbiol 132(2–3):127–133. https://doi.org/10.1016/j.ijfoodmicro.2009.04.013

    Article  Google Scholar 

  24. Helander IM, Nurmiaho-Lassila E-L, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria, 2001. [Online]. Available: www.elsevier.comrlocaterijfoodmicro

  25. Butnaru E, Stoleru E, Brebu MA, Darie-Nita RN, Bargan A, Vasile C (2019) Chitosan-based bionanocomposite films prepared by emulsion technique for food preservation. Materials 12(3). https://doi.org/10.3390/ma12030373

  26. Qian Z et al (2009) Chitosan-alginate sponge: preparation and application in curcumin delivery for dermal wound healing in rat. J Biomed Biotechnol 2009. https://doi.org/10.1155/2009/595126

  27. Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achievem Life Sci 10(1):27–37. https://doi.org/10.1016/j.als.2016.04.001

    Article  Google Scholar 

  28. Tanodekaew S, Prasitsilp M, Swasdison S, Thavornyutikarn B, Pothsree T, Pateepasen R (2004) Preparation of acrylic grafted chitin for wound dressing application. Biomaterials 25(7–8):1453–1460. https://doi.org/10.1016/j.biomaterials.2003.08.020

    Article  Google Scholar 

  29. Kweon DK, Song SB, Park YY (2003) Preparation of water-soluble chitosan/heparin complex and its application as wound healing accelerator. Biomaterials 24(9):1595–1601. https://doi.org/10.1016/S0142-9612(02)00566-5

    Article  Google Scholar 

  30. Wang K et al (2020) Evaluation of new film based on chitosan/gold nanocomposites on antibacterial property and wound-healing efficacy. In: Advances in materials science and engineering, vol 2020. https://doi.org/10.1155/2020/6212540

  31. Mohandas A, Deepthi S, Biswas R, Jayakumar R (2018) Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioactive Mater 3(3):267–277, KeAi Communications Co. https://doi.org/10.1016/j.bioactmat.2017.11.003

  32. Basumallick S, Rajasekaran P, Tetard L, Santra S (2014) Hydrothermally derived water-dispersible mixed valence copper-chitosan nanocomposite as exceptionally potent antimicrobial agent. J Nanoparticle Res 16(10). https://doi.org/10.1007/s11051-014-2675-9

  33. Wang K et al (2020) Recent advances in Chitosan-based metal nanocomposites for wound healing applications. In: Advances in materials science and engineering, vol 2020. Hindawi Limited. https://doi.org/10.1155/2020/3827912

  34. Bui VKH, Park D, Lee YC (2017) Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobialwound healing applications: a mini review of the research trends. Polymers 9(1). MDPI AG. https://doi.org/10.3390/polym9010021

  35. Sakthiguru N, Sithique MA (2020) Preparation and In Vitro biological evaluation of lawsone loaded O-carboxymethyl chitosan/zinc oxide nanocomposite for wound-healing application. ChemistrySelect 5(9):2710–2718. https://doi.org/10.1002/slct.201904159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Gulati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vijayan, S., Gulati, S., Sahu, T., Meenakshi, Kumar, S. (2022). Chitosan-Based Nanocomposites as Remarkably Effectual Wound Healing Agents. In: Gulati, S. (eds) Chitosan-Based Nanocomposite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-5338-5_9

Download citation

Publish with us

Policies and ethics