We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

A Narrative Review on Emerging Nanobioremediation Toward Enhanced Environmental Sustainability

  • Conference paper
  • First Online:
Proceedings of Indian Geotechnical and Geoenvironmental Engineering Conference (IGGEC) 2021, Vol. 2 ( IGGEC 2021)

Abstract

It is very necessary to have a critical review of the state of the art and practice of nanobioremediation, the recent innovative development in remediation techniques which finds its roots from nanotechnology and biotechnology. Recent studies have indicated its capability in complete eradication of contaminants (generally 100% efficiency) from a given polluted medium, highlighting the economical solutions which it offers to the costly traditional methods of treating contaminants such as heavy metals and aliphatic hydrocarbons posing significant threat to the environment and its wider applicability than its counterparts together. However, such a promising sustainable tool is still in its developmental phase and researchers worldwide are showing ample interest to unveil other aspects of this innovative technology. Furthermore, few studies have indicated the inhibitory effects of nanoparticles on the overall balance of the soil-ecosystem, such as on the survival of native microbes. This study aims at finding facts through established literature about various developmental phases and technologies through which nanobioremediation is evolving to change the future for enhanced environmental sustainability. The green production of different nanoparticles was also discussed in this work. This paper also underlines various prospects of nanobioremediation which can be optimized by conducting further research. Future investigation on its wider applicability and compatibility is also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Shih, Y. Tai, Chemosphere reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere 78(10), 1200–1206 (2010). https://doi.org/10.1016/j.chemosphere.2009.12.061

  2. Y. Li, X. Du, C. Wu, X. Liu, X. Wang, P. Xu, An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation. Nanoscale Res. Lett. 8(1), 1–5 (2013). https://doi.org/10.1186/1556-276X-8-522

    Article  Google Scholar 

  3. J. Sivakumar, C. Premkumar, P. Santhanam, N. Saraswathi, Biosynthesis of silver nanoparticles using calotropis gigantean leaf. Science 3(6), 265–270 (2011)

    Google Scholar 

  4. R.A. Wuana, F.E. Okieimen, "Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation", Int. Sch. Res. Not. 2011, Article ID 402647, 20 p (2011). https://doi.org/10.5402/2011/402647

  5. M.P. Shahi, P. Kumari, D. Mahobiya, S. Kumar Shahi, Nano-bioremediation of environmental contaminants: applications, challenges, and future prospects, in Bioremediation for Environmental Sustainability (Issue Cd). Elsevier B.V (2021). https://doi.org/10.1016/b978-0-12-820318-7.00004-6

  6. N. Bai, S. Wang, P. Sun, R. Abuduaini, X. Zhu, Y. Zhao, Degradation of nonylphenol polyethoxylates by functionalized Fe3O4 nanoparticle-immobilized Sphingomonas sp. Y2. Sci. Total Environ. 615, 462–468 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.290

    Article  Google Scholar 

  7. T.T. Le, K.H. Nguyen, J.R. Jeon, A.J. Francis, Y.S. Chang, Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J. Hazard. Mater. 287, 335–341 (2015). https://doi.org/10.1016/j.jhazmat.2015.02.001

    Article  Google Scholar 

  8. I. Sharma, Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. IntechOpen (2019)

    Google Scholar 

  9. T. Garima, S. Sp, Application of bioremediation on solid waste management: A review bio r emediation & biodegradation 5(6) (2020). https://doi.org/10.4172/2155-6199.1000248

  10. R.C. Monica, R. Cremonini, Nanoparticles and higher plants. Caryologia, 62(2), 161–165 (2009)

    Google Scholar 

  11. R. Vinayagam, S. Pai, T. Varadavenkatesan, M.K. Narasimhan, S. Narayanasamy, R. Selvaraj, Structural characterization of green synthesized α-Fe2O3 nanoparticles using the leaf extract of Spondias dulcis. Surfaces Interf. 20(August), 100618 (2020). https://doi.org/10.1016/j.surfin.2020.100618

    Article  Google Scholar 

  12. B. Karn, T. Kuiken, M. Otto, Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environ. Health Perspect. 117(12), 1823–1831 (2009). https://doi.org/10.1289/ehp.0900793

    Article  Google Scholar 

  13. C. Vidya, S. Hiremath, M.N. Chandraprabha, M.A. Lourdu Antonyraj, L. Venu Gopal, I., Jain, K. Bansal, Green synthesis of ZnO nanoparticles by Calotropis Gigantea. Int. J. Current Eng. Tech. Ncwse, 2012–2014 (2013). http://inpressco.com/category/ijcet

  14. M. Khatami, S. Pourseyedi, M. Khatami, H. Hamidi, M. Zaeifi, L. Soltani, Synthesis of silver nanoparticles using seed exudates of sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresources Bioproces. 2(1) (2015). https://doi.org/10.1186/s40643-015-0043-y

  15. R. Hao, D. Li, J. Zhang, T. Jiao, Green Synthesis of Iron Nanoparticles Using Green Tea and Its Removal of Hexavalent Chromium (2021)

    Google Scholar 

  16. J. Anuradha, Use of some aquatic and terrestrial weeds in the green synthesis of gold nanoparticles. Centre for Pollution Control and Environmental Engineering (2013)

    Google Scholar 

  17. K.M. Paknikar, V. Nagpal, A.V. Pethkar, J.M. Rajwade, Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Science Tech. Advanced Mat. 6(3–4 SPEC. ISS.), 370– 374 (2005). https://doi.org/10.1016/j.stam.2005.02.016

  18. B.D. Sawle, B. Salimath, R. Deshpande, M.D. Bedre, B.K. Prabhakar, A. Venkataraman, Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Science Tech. Adv. Mat. 9(3) (2008). https://doi.org/10.1088/1468-6996/9/3/035012

  19. V.R. Ranjitha, V.R. Rai, Bioassisted Synthesis of Gold Nanoparticles from Saccharomonospora glauca: Toxicity and Biocompatibility Study. BioNanoScience (2021). https://doi.org/10.1007/s12668-021-00830-9

    Article  Google Scholar 

  20. B. Karn, T. Kuiken, M. Otto, Nanotechnology and in situ remediation : a review of the benefits and potential risks A nanotecnologia e a remediação in situ : uma revisão dos benefícios e riscos em potencial, 165–178 (2009). https://doi.org/10.1289/ehp.0900793

  21. V. Chaturvedi, P. Verma, Fabrication of silver nanoparticles from leaf extract of Butea monosperma (Flame of forest) and their inhibitory effect on bloom-forming cyanobacteria. Bioresources Bioprocess. 2(1) (2015). https://doi.org/10.1186/s40643-015-0048-6

  22. F.A. Khan, Applications of nanomaterials in human health. Appl. Nanomaterials Human Health (2020). https://doi.org/10.1007/978-981-15-4802-4

    Article  Google Scholar 

  23. G. Arun, M. Eyini, P. Gunasekaran, Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotech. Bioproc. Eng. 19(6), 1083–1090. https://doi.org/10.1007/s12257-014-0071-z

  24. S. Tripathi, R. Sanjeevi, J. Anuradha, D.S. Chauhan, A.K. Rathoure, Nano-bioremediation: Nanotechnology and bioremediation. Biostimul. Remediation Tech. Groundwater Contamint., 202–219 (2018). https://doi.org/10.4018/978-1-5225-4162-2.ch012

  25. D. Chidambaram, T. Hennebel, S. Taghavi, J. Mast, N. Boon, W. Verstraete, D. Van Der Lelie, J.P. Fitts, Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environ. Sci. Technol. 44(19), 7635–7640 (2010). https://doi.org/10.1021/es101559r

    Article  Google Scholar 

  26. W. Zhang, C. Wang, H. Lien, Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. 40, 387–395 (1998)

    Google Scholar 

  27. G.B. Shan, J.M. Xing, H.Y. Zhang, H.Z. Liu, Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl. Environ. Microbiol. 71(8), 4497–4502 (2005). https://doi.org/10.1128/AEM.71.8.4497-4502.2005

    Article  Google Scholar 

  28. R. Khani, B. Roostaei, G. Bagherzade, M. Moudi, Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and antibacterial assay. J. Mol. Liq. 255, 541–549 (2018). https://doi.org/10.1016/j.molliq.2018.02.010

    Article  Google Scholar 

  29. M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Mater. Sci. Semicond. Process. 39, 621–628 (2015). https://doi.org/10.1016/j.mssp.2015.06.005

    Article  Google Scholar 

  30. D. Gnanasangeetha, D. Saralathambavani, One pot synthesis of Zinc Oxide nanoparticles via chemical and green method. Res. J. Mater. Sci. 1(7), 1–8 (2013)

    Google Scholar 

  31. F. Šulek, M. Drofenik, M. Habulin, Ž Knez, Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase. J. Magn. Magn. Mater. 322(2), 179–185 (2010). https://doi.org/10.1016/j.jmmm.2009.07.075

    Article  Google Scholar 

  32. C. Wang, W. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. 31(7), 2154–2156 (1997)

    Google Scholar 

  33. Y. Jiang, T. Deng, Y. Shang, K. Yang, H. Wang, Biodegradation of phenol by entrapped cell of Debaryomyces sp. with nano-Fe3O4 under hypersaline conditions. Int. Biodeterior. Biodegradation 123, 37–45 (2017). https://doi.org/10.1016/j.ibiod.2017.05.029

    Article  Google Scholar 

  34. K. Rajendran, S. Sen, Environmental Nanotechnology, Monitoring & Management (2018). https://doi.org/10.1016/j.enmm.2018.01.001

  35. A.K. Rathoure, Dioxins: source, origin and toxicity assessment. Biodiversity Int. J. 2(4), 310–314 (2018). https://doi.org/10.15406/bij.2018.02.00079

  36. Q. Zhao, X. Li, S. Xiao, W. Peng, W. Fan, Integrated remediation of sulfate reducing bacteria and nano zero valent iron on cadmium contaminated sediments. J. Hazard. Mater. 406, 124680 (2021). https://doi.org/10.1016/j.jhazmat.2020.124680

    Article  Google Scholar 

  37. A.O. Nyabola, P.G. Kareru, E.S. Madivoli, S.I. Wanakai, E.G. Maina, Formation of Silver Nanoparticles via Aspilia pluriseta extracts their antimicrobial and catalytic activity. J. Inorg. Organomet. Polym Mater. 30(9), 3493–3501 (2020). https://doi.org/10.1007/s10904-020-01497-7

    Article  Google Scholar 

  38. C. Jayaseelan, R. Ramkumar, A.A. Rahuman, P. Perumal, Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind. Crops Prod. 45, 423–429 (2013). https://doi.org/10.1016/j.indcrop.2012.12.019

    Article  Google Scholar 

  39. D. Philip, C. Unni, Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Physica E: Low-Dimensional Syst. Nanostrut. 43(7), 1318–1322 (2011). https://doi.org/10.1016/j.physe.2010.10.006

  40. E.J. Espinosa-Ortiz, M. Shakya, R. Jain, E.R. Rene, E.D. van Hullebusch, P.N.L. Lens, Sorption of zinc onto elemental selenium nanoparticles immobilized in Phanerochaete chrysosporium pellets. Environ. Sci. Pollut. Res. 23(21), 21619–21630 (2016). https://doi.org/10.1007/s11356-016-7333-6

    Article  Google Scholar 

  41. Y. Nangia, N. Wangoo, N. Goyal, G. Shekhawat, C.R. Suri, A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microbial Cell Factories 8(1), 1–7 (2009). https://doi.org/10.1186/1475-2859-8-39

    Article  Google Scholar 

  42. G. Jagathesan, P. Rajiv, Biosynthesis and characterization of iron oxide nanoparticles using Eichhornia crassipes leaf extract and assessing their antibacterial activity. Biocatalysis Agri. Biotech. 13(December 2017), 90–94 (2018). https://doi.org/10.1016/j.bcab.2017.11.014

  43. Y. Pang, G.M. Zeng, L. Tang, Y. Zhang, Y.Y. Liu, X.X. Lei, M.S. Wu, Z. Li, C. Liu, Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Biores. Technol. 102(22), 10733–10736 (2011). https://doi.org/10.1016/j.biortech.2011.08.078

    Article  Google Scholar 

  44. E. Benassai, M. Del Bubba, C. Ancillotti, I. Colzi, C. Gonnelli, N. Calisi, M.C. Salvatici, E. Casalone, S. Ristori, Green and cost-effective synthesis of copper nanoparticles by extracts of non-edible and waste plant materials from Vaccinium species: Characterization and antimicrobial activity. Mat. Sci. Eng. C, 119, 111453 (2021). https://doi.org/10.1016/j.msec.2020.111453

  45. H. Horváthová, K. Lászlová, K. Dercová, Bioremediation vs. nanoremediation: degradation of polychlorinated biphenyls (PCBS) using integrated remediation approaches. Water, Air, Soil Pollut. 230(8) (2019). https://doi.org/10.1007/s11270-019-4259-x

  46. J. Xu, J. Sun, Y. Wang, J. Sheng, F. Wang, M. Sun, Application of iron magnetic nanoparticles in protein immobilization. Molecules 19(8), 11465–11486 (2014). https://doi.org/10.3390/molecules190811465

    Article  Google Scholar 

  47. X. Liu, L. Yang, H. Zhao, W. Wang,Pyrolytic production of zerovalent iron nanoparticles supported on rice husk- derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils. Sci. Total Environ. 708(xxxx), 134479 (2020). https://doi.org/10.1016/j.scitotenv.2019.134479

  48. X. Wang, Z. Gai, B. Yu, J. Feng, C. Xu, Y. Yuan, Z. Lin, P. Xu, Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Appl. Environ. Microbiol. 73(20), 6421–6428 (2007). https://doi.org/10.1128/AEM.01051-07

    Article  Google Scholar 

  49. C. Jayaseelan, A.A. Rahuman, A.V. Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik, K.V.B. Rao, Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta—Part A: Molecular Biomole. Spect. 90, 78–84 (2012). https://doi.org/10.1016/j.saa.2012.01.006

    Article  Google Scholar 

  50. J.T. Nurmi, P.G. Tratnyek, J.E. Amonette, K. Pecher, C. Wang, J.C. Linehan, D.W. Matson, R.L.E.E. Penn, M.D. Driessen, Characterization and properties of metallic iron nanoparticles : Spectroscopy, electrochemistry, and Kinetics, 1221–1230 (2005)

    Google Scholar 

  51. M.W. Amer, A.M. Awwad, Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem. Int. 7(1), 1–8 (2021)

    Google Scholar 

  52. M. Jamzad, M. Kamari Bidkorpeh, Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. J. Nanostruct. Chem. 10(3), 193–201 (2020). https://doi.org/10.1007/s40097-020-00341-1

  53. K. Araya-Castro, T.C. Chao, B. Durán-Vinet, C. Cisternas, G. Ciudad, O. Rubilar, Green synthesis of copper oxide nanoparticles using protein fractions from an aqueous extract of brown algae macrocystis pyrifera. Processes 9(1), 1–10 (2021). https://doi.org/10.3390/pr9010078

    Article  Google Scholar 

  54. M.A. Shamsuzzaman, H. Khanam, R.N. Aljawfi, Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab. J. Chem. 10, S1530–S1536 (2020). https://doi.org/10.1016/j.arabjc.2013.05.004

  55. H. Khatoon, J.P.N. Rai, Augmentation of Atrazine biodegradation by two Bacilli immobilized on α-Fe 2 O 3 magnetic nanoparticles OPEN. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-36296-1

    Article  Google Scholar 

  56. M.K. Rajesh, K.S. Muralikrishna, S.S. Nair, B. Krishna Kumar, T.M. Subrahmanya, .K.P. Sonu, K. Subaharan, H. Sweta, T.S. Keshava Prasad, N. Chandran, K.B. Hebbar, A. Karun, Coconut inflorescence sap mediated synthesis of silver nanoparticles and its diverse antimicrobial properties. BioRxiv, 1–30 (2019). https://doi.org/10.1101/775940

  57. O.M. Darwesh, I.A. Matter, M.F. Eida, Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. J. Environ. Chem. Eng. 7(1), 102805 (2019). https://doi.org/10.1016/j.jece.2018.11.049

    Article  Google Scholar 

  58. C. Xiao, H. Li, Y. Zhao, X. Zhang, X. Wang, Green synthesis of iron nanoparticle by tea extract (polyphenols) and its selective removal of cationic dyes. J. Environ. Manage. 275(August), 111262 (2020). https://doi.org/10.1016/j.jenvman.2020.111262

    Article  Google Scholar 

  59. X. Zhang, L. Fan, Y. Cui, T. Cui, S. Chen, G. Ma, W. Hou, L. Wang, Green synthesis of gold nanoparticles using longan polysaccharide and their reduction of 4-nitrophenol and biological applications. Nano 15(1) (2020). https://doi.org/10.1142/S1793292020500022

  60. J. Sharma, Nanoremediation. Int. J. Life Sci. Technol. 12(1), 1–6 (2019)

    Google Scholar 

  61. W. Yan, H.L. Lien, B.E. Koel, W.X. Zhang, Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ. Sci. Process. Impacts. 15(1), 63–77 (2013)

    Google Scholar 

  62. C. Fajardo, S. Sánchez-fortún, G. Costa, M. Nande, P. Botías, J. García-cantalejo, G. Mengs, M. Martín, Science of the total environment evaluation of nanoremediation strategy in a Pb, Zn and Cd contaminated soil. Sci. Total Environ. 706, 136041 (2020). https://doi.org/10.1016/j.scitotenv.2019.136041

    Article  Google Scholar 

  63. P. Cao, K. Qiu, X. Zou, M. Lian, P. Liu, L. Niu, L. Yu, X. Li, Z. Zhang, Mercapto propyltrimethoxysilane- and ferrous sulfate-modified nano-silica for immobilization of lead and cadmium as well as arsenic in heavy metal- contaminated soil. Environ. Pollut. 266, 115152 (2020). https://doi.org/10.1016/j.envpol.2020.115152

    Article  Google Scholar 

  64. E. Akhayere, E.A. Essien, D. Kavaz, Effective and reusable nano-silica synthesized from barley and wheat grass for the removal of nickel from agricultural wastewater. Environ. Sci. Pollut. Res. 26(25), 25802–25813 (2019). https://doi.org/10.1007/s11356-019-05759-x

    Article  Google Scholar 

  65. T. Kathiraven, A. Sundaramanickam, N. Shanmugam, T. Balasubramanian, Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Applied Nanoscience (Switzerland) 5(4), 499–504 (2015). https://doi.org/10.1007/s13204-014-0341-2

    Article  Google Scholar 

  66. H. Dong, Z. Jiang, C. Zhang, J. Deng, J., Hou, K., Cheng, Y., Zhang, L., G. Zeng, Removal of tetracycline by Fe/Ni bimetallic nanoparticles in aqueous solution. J. Colloid Inter. Science (Vol. 513) (2018). https://doi.org/10.1016/j.jcis.2017.11.021

  67. M. Gil-díaz, J. Alonso, E. Rodríguez-valdés, J.R. Gallego, M.C. Lobo, Science of the Total Environment Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brown field soil. Sci. Total Environ. (2017). https://doi.org/10.1016/j.scitotenv.2017.02.011

    Article  Google Scholar 

  68. V. Bokare, K. Murugesan, J. Kim, E. Kim, Y. Chang, Science of the Total Environment Integrated hybrid treatment for the remediation of. Sci. Total Environ. 435–436, 563–566 (2012). https://doi.org/10.1016/j.scitotenv.2012.07.079

    Article  Google Scholar 

  69. W. Yan, H.L. Lien, B.E. Koel, W.X. Zhang, Iron nanoparticles for environmental clean-up: Recent developments and future outlook. Environmental Sci.: Processes Impact. 15(1), 63–77 (2013). https://doi.org/10.1039/c2em30691c

  70. A.D. Dwivedi, K. Gopal, Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf., A 369(1–3), 27–33 (2010). https://doi.org/10.1016/j.colsurfa.2010.07.020

    Article  Google Scholar 

  71. S.A. Ansari, Q. Husain, Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Adv. 30(3), pp 512–523. Elsevier. https://doi.org/10.1016/j.biotechadv.2011.09.005

  72. F.F. Yan, C. Wu, Y.Y. Cheng, Y.R. He, W.W. Li, H.Q. Yu, Carbon nanotubes promote Cr(VI) reduction by alginate-immobilized Shewanella oneidensis MR-1. Biochem. Eng. J. 77, 183–189 (2013). https://doi.org/10.1016/j.bej.2013.06.009

    Article  Google Scholar 

  73. N. Beheshtkhoo, M.A.J. Kouhbanani, A. Savardashtaki, A.M. Amani, S. Taghizadeh, Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl. Phys. A Mater. Sci. Process. 124(5), 0 (2018). https://doi.org/10.1007/s00339-018-1782-3

    Article  Google Scholar 

  74. Q. Husain, Magnetic nanoparticles as a tool for the immobilization/stabilization of hydrolases and their applications: An overview. Biointerface Res. Appl. Chem. 6(6), (2016)

    Google Scholar 

  75. K.S. Iliger, T.A. Sofi, N.A. Bhat, F.A. Ahanger, J.C. Sekhar, A.Z. Elhendi, A.A. Al-Huqail, F. Khan, Copper nanoparticles: Green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi J. Biological Sciences 28(2), 1477–1486 (2021). https://doi.org/10.1016/j.sjbs.2020.12.003

    Article  Google Scholar 

  76. A. Tao, P. Sinsermsuksakul, P. Yang, Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie - International Edition 45(28), 4597–4601 (2006). https://doi.org/10.1002/anie.200601277

    Article  Google Scholar 

  77. J. Qu, X. Yuan, X. Wang, P. Shao, Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environ. Pollut. 159(7), 1783–1788 (2011). https://doi.org/10.1016/j.envpol.2011.04.016

    Article  Google Scholar 

  78. P. Srinivasan, T. Selvankumar, B.A. Paray, M.U. Rehman, S. Kamala-Kannan, M. Govarthanan, W. Kim, K. Selvam, Chlorpyrifos degradation efficiency of Bacillus sp. laccase immobilized on iron magnetic nanoparticles. 3 Biotech 10(8), 1–11 (2020). https://doi.org/10.1007/s13205-020-02363-6

  79. E. Bestawy, B.F. El-Shatby, A.S. Eltaweil, Integration between bacterial consortium and magnetite (Fe3O4) nanoparticles for the treatment of oily industrial wastewater. World J. Microbiology Biotechnology 36(9) (2021). https://doi.org/10.1007/s11274-020-02915-1

  80. V. Kumar, R. Chandra, Bioremediation of Melanoidins containing distillery waste for environmental safety. Bioremediation of Industrial Waste for Environmental Safety: Vol. I (2020). https://doi.org/10.1007/978-981-13-3426-9_20

  81. D. Kratochvil, B. Volesky, Advances in the biosorption of heavy metals. Trends Biotechnol. 16(7), 291–300 (1998). https://doi.org/10.1016/S0167-7799(98)01218-9

    Article  Google Scholar 

  82. P. Chelkar, M. Shetty, E.J.E. Packiyam, P.R. Bhat, K. Jayadev, Decolorization of dye congo red by Aspergillus niger silver nanoparticles. J. Microbiology Biotech. Res. 4(3), 373–383 (2014)

    Google Scholar 

  83. D. Huang, C. Wang, P. Xu, G. Zeng, B. Lu, International Biodeterioration & Biodegradation A coupled photocatalytic-biological process for phenol degradation in the Phanerochaete chrysosporium -oxalate-Fe 3 O 4 system. Int. Biodeterior. Biodegradation 97, 115–123 (2015). https://doi.org/10.1016/j.ibiod.2014.11.001

    Article  Google Scholar 

  84. K.V.G. Ravikumar, D. Kumar, G. Kumar, P. Mrudula, C. Natarajan, A. Mukherjee, Enhanced Cr(VI) Removal by Nanozerovalent Iron-Immobilized Alginate Beads in the Presence of a Biofilm in a Continuous-Flow Reactor. Ind. Eng. Chem. Res. 55(20), 5973–5982 (2016). https://doi.org/10.1021/acs.iecr.6b01006

    Article  Google Scholar 

  85. V. Bokare, K. Murugesan, Y.M. Kim, J.R. Jeon, E.J. Kim, Y.S. Chang, Degradation of triclosan by an integrated nano-bio redox process. Biores. Technol. 101(16), 6354–6360 (2010). https://doi.org/10.1016/j.biortech.2010.03.062

    Article  Google Scholar 

  86. D.L. Huang, C. Wang, P. Xu, G.M. Zeng, B.A. Lu, N.J. Li, C. Huang, C. Lai, M.H. Zhao, J.J. Xu, X.Y. Luo, A coupled photocatalytic-biological process for phenol degradation in the Phanerochaete chrysosporium-oxalate-Fe3O4 system. Int. Biodeterior. Biodegradation 97, 115–123 (2015). https://doi.org/10.1016/j.ibiod.2014.11.001

    Article  Google Scholar 

  87. W. De Windt, P. Aelterman, W. Verstraete, Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ. Microbiol. 7(3), 314–325 (2005). https://doi.org/10.1111/j.1462-2920.2004.00696.x

    Article  Google Scholar 

  88. S. Argulwar, S.V. Sudakaran, M. Pulimi, N. Chandrasekaran, A. Mukherjee, Nano-bio sequential removal of hexavalent chromium using polymer-nZVI composite film and sulfate reducing bacteria under anaerobic condition. Environmental Tech. Inno. 9, 122–133 (2018). https://doi.org/10.1016/j.eti.2017.11.006

  89. J.C. Koenig, H.K. Boparai, M.J. Lee, D.M. O’Carroll, R.J. Barnes, M.J. Manefield, Particles and enzymes: Combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. J. Hazard. Mater. 308, 106–112 (2016). https://doi.org/10.1016/j.jhazmat.2015.12.036

    Article  Google Scholar 

  90. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotech. Biol. Med. 6(2), 257–262. (2010) https://doi.org/10.1016/j.nano.2009.07.002

  91. M. Sadat, M.A. Khalilzadeh, M. Mohseni, Biocatalysis and Agricultural Biotechnology Green synthesis of Ag nanoparticles from pomegranate seeds extract and synthesis of Ag-Starch nanocomposite and characterization of mechanical properties of the films. Biocatal. Agric. Biotechnol. 25(March), 101569 (2020). https://doi.org/10.1016/j.bcab.2020.101569

    Article  Google Scholar 

  92. F. Liang, J. Fan, Y. Guo, M. Fan, J. Wang, H. Yang, Reduction of nitrite by ultrasound-dispersed nanoscale zero-valent iron particles. Ind. Eng. Chem. Res. 47(22), 8550–8554 (2008). https://doi.org/10.1021/ie8003946

    Article  Google Scholar 

  93. G. Pei, Y. Zhu, J. Wen, Y. Pei, H. Li, Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil. Environmental Pollut. 256(xxxx), 113407 (2020). https://doi.org/10.1016/j.envpol.2019.113407

  94. P. Xu, G. Ming, D. Lian, C. Ling, S. Hu, M. Hua, Science of the Total Environment Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 424, 1–10 (2012). https://doi.org/10.1016/j.scitotenv.2012.02.023

    Article  Google Scholar 

  95. Z. Xiu, J. Ming, Z. Hui, T. Li, S. Long, S. Mahendra, G.V. Lowry, P. Alvarez, Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Tech. 101(4), 1141–1146 (2010). https://doi.org/10.1016/j.biortech.2009.09.057

  96. R. Dinesh, M. Anandaraj, V. Srinivasan, S. Hamza, Geoderma engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma. 173–174, 19–27 (2012). https://doi.org/10.1016/j.geoderma.2011.12.018

  97. E.S. Murgueitio Herrera, Synthesis, characterization and application of iron nanoparticles, in the removal of HTPs in soils and waters of the province of Francisco de Orellana-Ecuador (2018)

    Google Scholar 

  98. H. Shu, M. Chang, H. Yu, W. Chen, Reduction of an azo dye Acid Black 24 solution using synthesized nanoscale zerovalent iron particles. 314, 89–97 (2007). https://doi.org/10.1016/j.jcis.2007.04.071

  99. R. Singh, N. Manickam, M.K.R. Mudiam, R.C. Murthy, V. Misra, An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. J. Hazard. Mater. 258–259, 35–41 (2013). https://doi.org/10.1016/j.jhazmat.2013.04.016

    Article  Google Scholar 

  100. C.C. Azubuike, C.B. Chikere, G.C. Okpokwasili, Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32(11), 1–18 (2016). https://doi.org/10.1007/s11274-016-2137-x

    Article  Google Scholar 

  101. N. Biotechnology, D. Agency, Nanotechnology: Review on emerging techniques in remediating water soil pollutions. 24, 933–941 (2020)

    Google Scholar 

  102. X. Cao, A. Alabresm, Y.P. Chen, A.W. Decho, J. Lead, Improved metal remediation using a combined bacterial and nanoscience approach. Science Total Environ. 704, 135378 (2020). https://doi.org/10.1016/j.scitotenv.2019.135378

  103. A.K. Chauhan, N. Kataria, V.K. Garg, Green fabrication of ZnO nanoparticles using Eucalyptus spp. leaves extract and their application in wastewater remediation. Chemosphere 247, 125803 (2020). https://doi.org/10.1016/j.chemosphere.2019.125803

  104. I. Chung, A.A. Rahuman, S. Marimuthu, A.V. Kirthi, K. Anbarasan, P. Padmini, G. Rajakumar, Green synthesis of copper nanoparticles using eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp. Ther. Med. 14(1), 18–24 (2017). https://doi.org/10.3892/etm.2017.4466

    Article  Google Scholar 

  105. R.W. Gillham, Advances in Groundwater Pollution Control and Remediation, ed. M.M. Aral, 249–274. © 1996 Kluwer Academic Publishers. 249–250

    Google Scholar 

  106. S.P. Goutam, G. Saxena, D. Roy, A.K. Yadav, R.N. Bharagava, Green synthesis of nanoparticles and their applications in water and wastewater treatment. Bioremediation Indust. Waste Environ. Safety (Issue Dm) (2020). https://doi.org/10.1007/978-981-13-1891-7_16

    Article  Google Scholar 

  107. P. Govindrao, N.W. Ghule, A. Haque, M.G. Kalaskar, Journal of Drug Delivery Science and Technology Metal nanoparticles synthesis : An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Delivery Sci. Tech. 53(June), 101174 (2019). https://doi.org/10.1016/j.jddst.2019.101174

    Article  Google Scholar 

  108. S.J. Huang, M. Liao, D.H. Chen, Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnology Prog. 19(3), 1095–1100 (2003). https://doi.org/10.1021/bp025587v

  109. M.I. Husseiny, M.A. El-Aziz, Y. Badr, M.A. Mahmoud, Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 67(3–4), 1003–1006 (2007). https://doi.org/10.1016/j.saa.2006.09.028

    Article  Google Scholar 

  110. J.H. Jo, P. Singh, Y.J. Kim, C. Wang, R. Mathiyalagan, C.G. Jin, D.C. Yang, Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artificial Cells, Nanomedicine Biotech. 44(6), 1576–1581 (2016). https://doi.org/10.3109/21691401.2015.1068792

    Article  Google Scholar 

  111. A. Karthick, B. Roy, P. Chattopadhyay, Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils. J. Environ. Manage. 240(March), 93–107 (2019). https://doi.org/10.1016/j.jenvman.2019.03.088

    Article  Google Scholar 

  112. L. Karthik, G. Kumar, A.V. Kirthi, A.A. Rahuman, K.V. Bhaskara Rao, Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst. Eng. 37(2), 261–267 (2014). https://doi.org/10.1007/s00449-013-0994-3

  113. Y. Kim, K. Murugesan, Y. Chang, E. Kim, Y. Chang, Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation, June, 216–224 (2011). https://doi.org/10.1002/jctb.2699

  114. S. Nayak, S.P. Sajankila, C.V. Rao, Green synthesis of gold nanoparticles from banana pith extract and its evaluation of antibacterial activity and catalytic reduction of Malachite green dye. J. Microbiol. Biotech. Food Sci. 7(6), 641–645 (2018). https://doi.org/10.15414/jmbfs.2018.7.6.641-645

  115. S. Pai, S.M. Kini, M.K. Narasimhan, A. Pugazhendhi, R. Selvaraj, Structural characterization and adsorptive ability of green synthesized Fe3O4 nanoparticles to remove Acid blue 113 dye. Surfaces Interf. 23, 100947 (2020). https://doi.org/10.1016/j.surfin.2021.100947

  116. K.M. Rajesh, B. Ajitha, Y.A.K. Reddy, Y. Suneetha, P.S. Reddy, Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik 154, 593–600 (2018). https://doi.org/10.1016/j.ijleo.2017.10.074

    Article  Google Scholar 

  117. R. Seif El-Nasr, S.M. Abdelbasir, A.H. Kamel, S.S.M. Hassan, Environmentally friendly synthesis of copper nanoparticles from waste printed circuit boards. Sep. Purif. Tech. 230(June), 115860 (2019). https://doi.org/10.1016/j.seppur.2019.115860

  118. B. Sharma, D.D. Purkayastha, S. Hazra, M. Thajamanbi, C.R. Bhattacharjee, N.N. Ghosh, J. Rout, Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C.Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess Biosyst. Eng. 37(12), 2559–2565 (2014). https://doi.org/10.1007/s00449-014-1233-2

  119. A. Sherry Davis, P. Prakash, K. Thamaraiselvi, Nanobioremediation technologies for sustainable environment. Environ. Sci. Eng. (Subseries: Environmental Science), 9783319484389, 13–33 (2017). https://doi.org/10.1007/978-3-319-48439-6_2

  120. R. Singh, M. Behera, S. Kumar, Nano-bioremediation: an innovative remediation technology for treatment and management of contaminated sites bioremediation of industrial waste for environmental safety, 165–182 (2020). https://doi.org/10.1007/978-981-13-3426-9_7

  121. C. Sun, S. Kr Karn, A. Almeida, L. Yang, S. He, L. Zhong, J. Duan, Y. Feng, B. Yang, Bioremediation of wastewater by iron oxide-biochar nanocomposites loaded with photosynthetic bacteria. Front. Microbiol 8, 823 (2017). https://doi.org/10.3389/fmicb.2017.00823

    Article  Google Scholar 

  122. P. Yuan, M. Fan, D. Yang, H. He, D. Liu, A. Yuan, J.X. Zhu, T.H. Chen, Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. J. Hazardous Mat. 166(2–3), 821–829 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.083

  123. E. Zare, S. Pourseyedi, M. Khatami, E. Darezereshki, Simple biosynthesis of zinc oxide nanoparticles using nature’s source, and it’s in vitro bio-activity. J. Mol. Struct. 1146, 96–103 (2017). https://doi.org/10.1016/j.molstruc.2017.05.118

    Article  Google Scholar 

  124. F. Zhu, S. Ma, T. Liu, X. Deng, Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. J. Clean. Prod. 174, 184–190 (2018). https://doi.org/10.1016/j.jclepro.2017.10.302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaid Yousuf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yousuf, S., Agnihotri, A.K. (2023). A Narrative Review on Emerging Nanobioremediation Toward Enhanced Environmental Sustainability. In: Agnihotri, A.K., Reddy, K.R., Chore, H.S. (eds) Proceedings of Indian Geotechnical and Geoenvironmental Engineering Conference (IGGEC) 2021, Vol. 2. IGGEC 2021. Lecture Notes in Civil Engineering, vol 281. Springer, Singapore. https://doi.org/10.1007/978-981-19-4731-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4731-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4730-8

  • Online ISBN: 978-981-19-4731-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics